

Product Data Sheet

PBT 1033

Cat. No.:HY-105321CAS No.:747408-78-2Molecular Formula: $C_{12}H_{12}Cl_2N_2O$ Molecular Weight:271.14Target:BacterialPathway:Anti-infection

Storage: Powder -20°C

-20°C 3 years 4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (368.81 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	3.6881 mL	18.4407 mL	36.8813 mL
	5 mM	0.7376 mL	3.6881 mL	7.3763 mL
	10 mM	0.3688 mL	1.8441 mL	3.6881 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 2.5 mg/mL (9.22 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	PBT 1033 (PBT 2) is an orally active copper/zinc ionophore. PBT 1033 restores cognition in mouse models of Alzheimer's disease (AD). PB 1033 also has antibacterial activity against Gram-positive bacteria ^{[1][2]} .
In Vitro	PB 1033 displays antibacterial activity against S. uberis, with a MIC value of $14.5 \mu\text{M}^{[2]}$. PBT2 (1, 3 and 7.5 μM , 6 h) protects neurons against glutamate-induced excitotoxicity ^[3] . PBT2 (10 μM , 1 or 6 h) reduces NMDAR-mediated Ca2+ flux in mouse cortical neurons ^[3] . PBT2 (0-10 μM , 1 h) increases GSK3 α / β phosphorylation in SH-SY5Y cells ^[4] . PBT2 (20 μM , 1 h) prevents the formation of Zn-induced protease resistant A β aggregates ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Western Blot Analysis ^[4]

Cell Line:	SH-SY5Y cells	
Concentration:	0-10 μΜ	
Incubation Time:	1h	
Result:	Increased in cellular levels of GSK3 α/β phosphorylated at the inhibitory serine 21/9 residue (ser21/9 on GSK3 α/β).	

In Vivo

PBT 1033 (30 mg/kg/d, p.o., 11 days) restores biochemical substrates of learning/memory in a mouse model of alzheimer's disease^[5].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Female Tg2576 mice ^[5]	
Dosage:	30 mg/kg/d	
Administration:	Oral administration, 11 days	
Result:	Increased hippocampal apical spine density, basal spine density.	

REFERENCES

- [1]. Faux NG, et al. PBT2 rapidly improves cognition in Alzheimer's Disease: additional phase II analyses. J Alzheimers Dis. 2010;20(2):509-16.
- [2]. Harbison-Price N, et al. Multiple Bactericidal Mechanisms of the Zinc Ionophore PBT2. mSphere. 2020 Mar 18;5(2):e00157-20.
- [3]. Johanssen T, et al. PBT2 inhibits glutamate-induced excitotoxicity in neurons through metal-mediated preconditioning. Neurobiol Dis. 2015 Sep;81:176-85.
- [4]. Crouch PJ, et al. The Alzheimer's therapeutic PBT2 promotes amyloid-β degradation and GSK3 phosphorylation via a metal chaperone activity. J Neurochem. 2011 Oct;119(1):220-30.
- [5]. Adlard PA, et al. Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer's disease. PLoS One. 2011 Mar 11;6(3):e17669.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com\\$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA