Proteins

Product Data Sheet

CP-113818

Cat. No.: HY-105445 CAS No.: 135025-12-6 Molecular Formula: $C_{24}H_{42}N_{2}OS_{3}$ Molecular Weight: 470.8

Target: Acyltransferase

Pathway: Metabolic Enzyme/Protease Storage: Powder -20°C 3 years

> 4°C 2 years -80°C In solvent 6 months

> > -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro DMSO: 100 mg/mL (212.40 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.1240 mL	10.6202 mL	21.2404 mL
	5 mM	0.4248 mL	2.1240 mL	4.2481 mL
	10 mM	0.2124 mL	1.0620 mL	2.1240 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo 1. Add each solvent one by one: 10% DMSO >> 90% corn oil

Solubility: 5 mg/mL (10.62 mM); Clear solution; Need ultrasonic

CP-113818 inhibits A β production in cell-based experiments^[1].

BIOLOGICAL ACTIVITY

Description CP-113818 is a potent cholesterol acyltransferase (ACAT) inhibitor. CP-113818 can be used for the research of Alzheimer's disease^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo $CP-113818 \ (0-7.1 \ mg/kg/day) \ markedly \ reduces \ amyloid \ pathology \ in \ a \ mouse \ model \ of \ Alzheimer's \ disease \ [1].$

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

C57BL/6, hAPP (human amyloid precursor protein) transgenic mice^[1] Animal Model:

In Vitro

Dosage:	0, 0.2, 1.6, 3.2, 4.8, and 7.1 mg/kg/day		
Administration:	Via implantable slow-release biopolymer pellets, 21 days for nontransgenic mice or 60 days for hAPP mice		
Result:	Reduced total cholesterol levels by 29% in the serum, hepatic free cholesterol and cholesteryl-esters were also decreased in a dose-dependent manner by up to 37% and 93%, respectively in the nontransgenic mice. Effectively reduced cholesteryl-ester levels of hAPP mice in the absence of adrenal toxicity reduced plaque numbers, and decreased amyloid load in a gender-independent manner in hAPP mice. Reduced levels of "insoluble" and soluble $A\beta_{1-40}$ and $A\beta_{1-42}$ in the brains of hAPP transgenic mice. Restored normal spatial learning and memory in female hAPP mice in a morris water maze test. Reduced processing of endogenous APP but not notch or N-cadherin, without directly inhibiting β - and γ -secretase activities or $A\beta$ aggregation in nontransgenic littermates.		

CUSTOMER VALIDATION

• Cancer Sci. 2023 Oct 25.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Hutter-Paier B, et al. The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer's disease. Neuron. 2004 Oct 14;44(2):227-38.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA