PHA-543613 dihydrochloride

MedChemExpress

Cat. No.: CAS No.: Molecular Formula: Molecular Weight: Target: Pathway: Storage:	HY-105670B 478148-58-2 C ₁₅ H ₁₉ Cl ₂ N ₃ O ₂ 344.24 nAChR Membrane Transporter/Ion Channel; Neuronal Signaling 4°C. sealed storage, away from moisture	H-CI H-CI
Storage:	4°C, sealed storage, away from moisture * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)	

гу	BIOLOGICAL ACTIVITY					
PHA-543613 dihydrochloride is a potent, orally active, brain-penetrant and selective α7 nAChR agonist with a K nM. PHA-543613 dihydrochloride displays selectivity for α7-nAChR over α3β4, α1β1γδ, α4β2 and 5-HT3 recepto 543613 dihydrochloride can be used for the cognitive deficits of Alzheimer's disease and schizophrenia researc						
Ki: 8.8 nM (α7 nAChR) ^[1]						
PHA-543613 dihydrochlorid PI3K-Akt signaling pathway	de (0.3 mg/kg) successfully reverses Scopolamine-induced short-term memory deficits in rats ^[2] . de (4 and 12 mg/kg; i.p. once) reduces behavioral deficits and brain edema is dependent on the y ^[3] . y confirmed the accuracy of these methods. They are for reference only. Male CD-1 mice with (intracerebral hemorrhage) ICH-induction or sham surgery ^[3] 4 and 12 mg/kg Intraperitoneal injection; 4 and 12 mg/kg; 1 hour after surgery Increased p-Akt and decreased p-GSK-3 and CC3 expressions in the ipsilateral hemisphere and reduced the neuronal cell death in the perihematomal area. Attenuated behavioral deficits andbrain edema at 72 hours after ICH.					
	PHA-543613 dihydrochlorid nM. PHA-543613 dihydrochlorid 543613 dihydrochloride ca Ki: 8.8 nM (α7 nAChR) ^[1] PHA-543613 dihydrochlorid PHA-543613 dihydrochlorid PI3K-Akt signaling pathway MCE has not independently Animal Model: Dosage: Administration:					

REFERENCES

[1]. Donn G Wishka, et al. Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the alpha7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure--activity relationship. J Med Chem. 2006 Jul 13;49(14):4425-36.

[2]. Nóra Bruszt, et al. Potentiation of cognitive enhancer effects of Alzheimer's disease medication memantine by alpha7 nicotinic acetylcholine receptor agonist PHA-543613 in the Morris water maze task. Psychopharmacology (Berl). 2021 Nov;238(11):3273-3281.

[3]. Krafft PR, et al. α7 nicotinic acetylcholine receptor agonism confers neuroprotection through GSK-3β inhibition in a mouse model of intracerebral hemorrhage. Stroke. 2012 Mar;43(3):844-50.

Product Data Sheet

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA