Valproic acid

Cat. No.: HY-10585
CAS No.: 99-66-1
Molecular Formula: C₈H₁₆O₂
Molecular Weight: 144.21
Target: HDAC; Autophagy; Mitophagy
Pathway: Cell Cycle/DNA Damage; Epigenetics; Autophagy
Storage: Pure form
-20°C 3 years
4°C 2 years
In solvent
-80°C 6 months
-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro
DMSO : 100 mg/mL (693.43 mM; Need ultrasonic)
H₂O : 1 mg/mL (6.93 mM; Need ultrasonic and warming)

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>Mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mM</td>
<td>6.9343 mL</td>
<td>34.6717 mL</td>
<td>69.3433 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td>1.3869 mL</td>
<td>6.9343 mL</td>
<td>13.8687 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td>0.6934 mL</td>
<td>3.4672 mL</td>
<td>6.934 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo
1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
 Solubility: ≥ 3.25 mg/mL (22.54 mM); Clear solution
2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 Solubility: ≥ 3.25 mg/mL (22.54 mM); Clear solution
3. Add each solvent one by one: 10% DMSO >> 90% corn oil
 Solubility: ≥ 3.25 mg/mL (22.54 mM); Clear solution

BIOLOGICAL ACTIVITY

Description
Valproic acid is an HDAC inhibitor, with IC₅₀ in the range of 0.5 and 2 mM, also inhibits HDAC1 (IC₅₀, 400 μM), and induces proteasomal degradation of HDAC2; Valproic acid sodium salt is used in the treatment of epilepsy, bipolar disorder and prevention of migraine headaches.

IC₅₀ & Target
IC₅₀: 400 μM (HDAC1), 0.5-2 mM (HDAC)[5]HDAC2[6]
In Vitro
Valproic acid inhibits the growth dose- and time-dependently with an IC$_{50}$ of appr 10 and 4 mM at 24 and 72 h, respectively. Valproic acid significantly attenuates the activities of total, cytosol and nuclear HDACs. Valproic acid increases the form of acetylated histone 3 in HeLa cells. Valproic acid (1-3 mM) induces a G1 phase arrest, while 10 mM Valproic acid significantly induces a G2/M phase arrest of cell cycle in HeLa cells. In addition, Valproic acid increases the percentage of sub-G1 cells in HeLa cells in a dose-dependent manner at 24 h. Valproic acid inhibits the mRNA and protein expression of VEGF, VEGFR2 and bFGF. Valproic acid inhibits the protein expression of HDAC1, increases histone H3 acetylation, and enhances the accumulation of hyperacetylated histone H3 on VEGF promoters. Valproic acid treatment results in increased levels of phosphorylated AMPK/ACC in primary mouse hepatocytes. Phosphorylation of ACC following Valproic acid treatment is AMPK-dependent. Valproic acid inhibits the deacetylase activity of both mouse liver nuclear extracts and human recombinant HDAC1 while of the metabolites of Valproic acid, only 2-ene-Valproic acid and 4-ene-Valproic acid diminish deacetylase activity.

In Vivo
Valproic acid (500 mg/kg, i.p.) inhibits the tumor growth and angiogenesis in the mice transplanted with Kasumi-1 cells. The IR rate in the Valproic acid group is 57.25% at the end of the experiment. Valproic acid (350 mg/kg, i.p.) demonstrates more social investigation and play fighting than control animals.

PROTOCOL

Kinase Assay
The activity of caspase-3, -8 and -9 is assessed using the caspase-3, -8 and -9 colorimetric assay kits, respectively. In brief, 1×10^6 cells in a 60-mm culture dish are incubated with 10 mM Valproic acid for 24 h. The cells are then washed in PBS and suspended in 5 volumes of lysis buffer provided with the kit. Protein concentrations are determined using the Bradford method. Supernatants containing 50 μg total protein are used to determine caspase-3, -8 and -9 activities. The supernatants are added to each well in 96-well microtiter plates with DEVD-pNA, IETD-pNA or LEHD-pNA as caspase-3, -8 and -9 substrates and the plates are incubated at 37°C for 1 h. The optical density of each well is measured at 405 nm using a microplate reader. The activity of caspase-3, -8 and -9 is expressed in arbitrary absorbance units.

Cell Assay
In brief, 5×10^5 cells are seeded in 96-well microtiter plates for MTT assays. After exposure to the designated doses of Valproic acid for the indicated times, MTT solution [20 mL: 2 mg/mL in phosphate-buffered saline (PBS)] is added to each well of the 96-well plates. The plates are additionally incubated for 3 h at 37°C. Medium is withdrawn from the plates by pipetting and 200 mL DMSO is added to each well to solubilize the formazan crystals. The optical density is measured at 570 nm using a microplate reader.

Animal Administration
Splenectomies are performed on the BALB/c nude mice. One week after the splenectomies, the mice receive whole body irradiation with 137Cs at a dose of 4 Gy. At 48-72 h post-irradiation, the mice are subcutaneously implanted with Kasumi-1 cells (2×10^7 cells/mouse with 0.15-0.2 mL) in the right axillary region. The mice are randomly assigned to two groups, the Valproic acid (n=6) and control (n=6) groups. When the tumors are appr 200 mm3 in size at appr 10 days post-implantation, 0.2 mL Valproic acid (500 mg/kg body weight) or 0.2 mL saline is injected intraperitoneally every day. Valproic acid is dissolved in saline at a concentration of 25 mg/mL. The longest diameter (a) and the shortest diameter (b) of the tumor are measured every three days, and the tumor volume (TV) is calculated according to the following formula: TV=1/2×a×b2. Following two weeks of injections, the mice are sacrificed by cervical dislocation and the tumor masses are removed for the following experiments.

CUSTOMER VALIDATION
www.MedChemExpress.com
See more customer validations on www.MedChemExpress.com

REFERENCES

