Nelonemdaz

Cat. No.:	HY-106408		
CAS No.:	640290-67-1		
Molecular Formula:	$C_{15}H_{8}F_{7}NO_{3}$		
Molecular Weight:	383.22		
Target:	iGluR		
Pathway:	Membrane Transporter/Ion Channel; Neuronal Signaling		
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	2 years
		-20°C	1 year

SOLVENT & SOLUBILITY

In Vitro	

DMSO : ≥ 112.5 mg/mL (293.57 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.6095 mL	13.0473 mL	26.0947 mL
	5 mM	0.5219 mL	2.6095 mL	5.2189 mL
	10 mM	0.2609 mL	1.3047 mL	2.6095 mL

BIOLOGICAL ACTIVITY			
BIOLOGICAL ACTIVITY			
Description	Nelonemdaz (Salfaprodil free base) is an NR2B-selective and uncompetitive antagonist of N-methyl-D-aspartate (NMDA). Nelonemdaz is also a free radical scavenger. Nelonemdaz has excellent neuroprotection against NMDA- and free radical- induced cell death ^{[1][2]} .		
IC ₅₀ & Target	NMDA receptor ^[1]		
In Vitro	Nelonemdaz (10-300 μM) shows apparent neuroprotection against 300 μM N-methyl-d-aspartate (NMDA) at doses as low as 30 μM ^[1] . Nelonemdazl (10-500 μM) inhibits the electrophysiologic response of cultured cortical neurons to 300 μM NMDA in a concentration-dependent manner ^[1] . Nelonemdaz (0.1-1 μM) produces a marked reduction of Fe ²⁺ -induced neurotoxicity, even at doses of 0.1 to 0.3 μM ^[1] . Nelonemdaz (0.1-1 μM) blocks the degeneration of neurons and glia in cortical cell cultures ^[1] . Nelonemdaz (0-350 μM) effectively scavenges superoxide radicals (IC ₅₀ =63.07±1.44 μM), nitric oxide (IC ₅₀ =155.8±4.88 μM), and hydroxyl radicals (IC ₅₀ =58.45±1.74 μM) ^[3] .		

Product Data Sheet

__0

ΟH

HO

	Nelonemdaz (0.78-12.5 μM) decreases the amount of antimycin A-induced ROS/RNS formation in a dose-dependent manner, with an IC ₅₀ of 2.21±0.11 μM ^[3] . Nelonemdaz (0.19-12.5 μM) inhibits malondialdehyde (MDA) formation with an IC ₅₀ of 2.72±0.26 μM ^[3] . Nelonemdaz (0-125 μM) effectively reduces iron-ascorbate-induced lipid peroxidation (IC ₅₀ =24.56±0.07 μM) ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			
In Vivo	Nelonemdaz (0.5-20 mg/kg; i.v.) reduces cerebral infarct evolving 24 h after 60-mins occlusion of the middle cerebral artery occlusion (MCAO) substantially and dose dependently ^[1] . Nelonemdaz (5 mg/kg; i.v.) protects white matter such as axons and myelin as well as gray matter from ischemic brain injury ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			
	Animal Model:	Male Sprague-Dawley rats (260 to 300 g) (clip occlusion model) $^{[1]}$		
Ad	Dosage:	0.5-20 mg/kg		
	Administration:	I.v. administration 5 mins after reperfusion		
	Result:	Produced a large neuroprotective effect, with a maximal reduction in infarct volume of 66% at doses of 2.5 to 5 mg/kg. Not observed neuronal damage in the most vulnerable cortical area after administration of 5 mg/kg.		
	Animal Model:	Male Sprague-Dawley rats (260 to 300 g) (intraluminal thread occlusion model) $^{\left[1 ight] }$		
	Dosage:	5 mg/kg		
	Administration:	I.v. administration 30 mins after reperfusion		
	Result:	Did not change physiologic variables such as arterial pH, PCO ₂ , PO ₂ , and hematocrit. Reduced infarct volume evolving in the cortex and the striatum substantially. Reduced white matter damage in the striatum and external capsule markedly.		

REFERENCES

[1]. Gwag BJ, et al. Marked prevention of ischemic brain injury by Neu2000, an NMDA antagonist and antioxidant derived from aspirin and sulfasalazine. J Cereb Blood Flow Metab. 2007 Jun;27(6):1142-51.

[2]. Sung IC, et, al. Neu2000, an NR2B-selective, Moderate NMDA Receptor Antagonist and Potent Spin Trapping Molecule for Stroke. Drug News Perspect. 2010 Nov; 23(9): 549-56.

[3]. Nishant PV, et, al. Antioxidant Properties of Neu2000 on Mitochondrial Free Radicals and Oxidative Damage. Toxicol In Vitro. 2013 Mar; 27(2): 788-97.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA