Screening Libraries

Product Data Sheet

Sulcotrione

Cat. No.: HY-107368 CAS No.: 99105-77-8 Molecular Formula: C₁₄H₁₃ClO₅S Molecular Weight: 328.77

Target: Reactive Oxygen Species

Pathway: Immunology/Inflammation; Metabolic Enzyme/Protease; NF-κB

-20°C Storage: Powder 3 years

4°C 2 years -80°C 2 years

In solvent

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (304.16 mM; Need ultrasonic and warming)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.0416 mL	15.2082 mL	30.4164 mL
	5 mM	0.6083 mL	3.0416 mL	6.0833 mL
	10 mM	0.3042 mL	1.5208 mL	3.0416 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.60 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (7.60 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.60 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Sulcotrione is a β-triketone herbicide which can inhibit hydroxyphenylpyruvate dioxygenase (HPPD).

IC₅₀ & Target

HPPD^[1]

In Vitro

The results show that sulcotrione behaves as time-independent reversible inhibitor. Similar results are previously described for natural β -triketones, and for the synthetic β -triketone NTBC. However it is the first time that such behavior is observed using a purified hydroxyphenylpyruvate dioxygenase (HPPD) and a synthetic β-triketone, namely sulcotrione. Inhibition

kinetic analysis, performing with 3 hydroxyphenylpyruvate (HPP) and sulcotrione concentrations, show that the apparent K $_{\rm M}$ increasing with sulcotrione concentration. This behavior is consistent with the data present in the literature, describing sulcotrione as a competitive inhibitor of HPPD^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay [1]

Electrochemical behavior of sulcotrione at 0.2 mg/L is characterized by cyclic voltammetry. Preliminary HPPD inhibition assays are performed by incubating the enzyme during time periods ranging from 2 to 10 min in presence of sulcotrione at differnt concentrations^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Rocaboy-Faquet E, et al. A novel amperometric biosensor for ß-triketone herbicides based on hydroxyphenylpyruvatedioxygenase inhibition: A case study for sulcotrione. Talanta. 2016;146:510-6.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA