MedChemExpress

Product Data Sheet

Ro 04-5595 hydrochloride

Cat. No.:	$\mathrm{HY}-107696$
CAS No.:	$64047-73-0$
Molecular Formula:	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{2}$
Molecular Weight:	368.3
Target:	iGluR
Pathway:	Membrane Transporter/lon Channel; Neuronal Signaling
Storage:	Please store the product under the recommended conditions in the Certificate of
	Analysis.

BIOLOGICAL ACTIVITY

Description
IC_{50} \& Target

In Vivo

Ro 04-5595 hydrochloride is a GluN2B-selective NMDA receptor antagonist (K_{i} : 31 nM$)^{[1]}$.

GluN2B
31 nM (Ki)

Ro 04-5595 hydrochloride ($5-20 \mathrm{mg} / \mathrm{kg}$, i.p.) inhibits MA-induced locomotor stimulation in mice ${ }^{[2]}$. Ro 04-5595 hydrochloride ($10 \mathrm{mg} / \mathrm{kg}$, i.p., for 6 days) reduced AMPA to NMDA ratio in Cocaine self-administering rats ${ }^{[3]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Methamphetamine (MA) treated mice ${ }^{[1]}$
Dosage:	$3-30 \mathrm{mg} / \mathrm{kg}$
Administration:	i.p., given 30 min before injection of MA (2 mg/kg, i.p. $)$
Result:	Dose-dependently decreased MA-induced locomotor activity.

REFERENCES

[1]. Mutel V, et al. In vitro binding properties in rat brain of [3H]Ro 25-6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits. J Neurochem. 1998 May;70(5):2147-55.
[2]. Li MH, et al. Amphetamine and Methamphetamine Increase NMDAR-GluN2B Synaptic Currents in Midbrain Dopamine Neurons. Neuropsychopharmacology. 2017 Jun;42(7):1539-1547.
[3]. deBacker J, et al. GluN2B-containing NMDA receptors blockade rescues bidirectional synaptic plasticity in the bed nucleus of the stria terminalis of cocaine selfadministering rats. Neuropsychopharmacology. 2015 Jan;40(2):394-405.

Caution: Product has not been fully validated for medical applications. For research use only.

[^0]
[^0]: Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com
 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

