GW 501516

Cat. No.: HY-10838

CAS No.: 317318-70-0

Molecular Formula: C_{21}H_{18}F_{3}NO_{3}S_{2}

Molecular Weight: 453.5

Target: PPAR; Autophagy

Pathway: Cell Cycle/DNA Damage; Vitamin D Related/Nuclear Receptor; Autophagy

Storage: Powder

-20°C 3 years

4°C 2 years

In solvent

-80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: ≥ 100 mg/mL (220.51 mM)

* "≥" means soluble, but saturation unknown.

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>Solvent Concentration</th>
<th>Mass 1 mg</th>
<th>Mass 5 mg</th>
<th>Mass 10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td></td>
<td>2.2051 mL</td>
<td>11.0254 mL</td>
<td>22.0507 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td></td>
<td>0.4410 mL</td>
<td>2.2051 mL</td>
<td>4.4101 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td></td>
<td>0.2205 mL</td>
<td>1.1025 mL</td>
<td>2.2051 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
 Solubility: ≥ 2.5 mg/mL (5.51 mM); Clear solution

2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 Solubility: 2.5 mg/mL (5.51 mM); Suspended solution; Need ultrasonic

3. Add each solvent one by one: 10% DMSO >> 90% corn oil
 Solubility: ≥ 2.5 mg/mL (5.51 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

GW 501516 (GW 1516) is a PPARδ agonist with an EC_{50} of 1.1 nM\(^{[1]}\).

<table>
<thead>
<tr>
<th>IC_{50} & Target</th>
<th>PPARδ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 nM (EC_{50})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In Vitro</th>
<th>GW 501516 is shown to be the most potent and selective PPARδ agonists known with an EC_{50} of 1.1 nM against PPARδ and</th>
</tr>
</thead>
</table>
1000-fold selectivity over the other human subtypes, PPARα and-γ\cite{1}.

GW 501516 exerts anti-inflammatory effects in mouse cultured proximal tubular (mProx) cells. GW 501516 inhibits palmitate- and TNFα-induced increases in MCP-1 mRNA expression in a dose-dependent manner\cite{3}.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

GW 501516 causes impaired bone formation, leading to decreased BMD and deterioration of bone properties in OVX rats\cite{2}.

GW 501516 attenuates interstitial inflammation and proximal tubular cell damage in a protein-overload mouse nephropathy model\cite{3}.

GW 501516 treatment enhances running endurance and the proportion of succinate dehydrogenase (SDH)-positive muscle fibres in both trained and untrained mice\cite{4}.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay\cite{3}

GW 501516 is dissolved in DMSO. Cells are starved by incubation in 0.2% FCS DMEM for 9 h, then pre-incubated with GW 501516, at a final concentration of 2.5 and 5 µM, or 0.05% DMSO as control for 3 hours, followed by stimulation with 150 µM palmitate bound to 8.0% BSA for 12 h\cite{3}.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration\cite{2,3}

Rats: Female Sprague Dawley rats, 12 weeks of age, are allocated to a sham-operated group and 3 OVX groups; high-dose GW 501516 (OVX-GW5), low-dose GW 501516 (OVX-GW1), and a control group (OVX-CTR), respectively. Animals receive GW 501516 or vehicle (methylcellulose) daily for 4 months by gavage. Bone mineral density (BMD) is assessed by dual x-ray absorptiometry at the femur, spine, and whole body\cite{2}.

Mice: Mice are randomly allocated to different groups and receive therapeutic diet and treatment. The GW 501516-containing rodent diet is made by evenly adding GW 501516 to the control diet to a final concentration of 0.04% w/w. In the control diet, 10% of the total calories are from fat (5.5% from soybean oil and 4.5% from lard)\cite{3}.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cell Stem Cell. 2022 Sep 1;29(9):1366-1381.e9.

See more customer validations on www.MedChemExpress.com

REFERENCES

