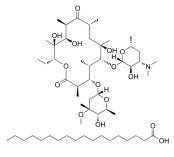
Proteins

Product Data Sheet


Erythromycin stearate

Cat. No.: HY-108875 CAS No.: 643-22-1 Molecular Formula: C₅₅H₁₀₃NO₁₅ 1018.4

Target: Antibiotic; Bacterial; DNA/RNA Synthesis Pathway: Anti-infection; Cell Cycle/DNA Damage

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

BIOLOGICAL ACTIVITY

Description

Molecular Weight:

Erythromycin stearate is a macrolide antibiotic produced by actinomycete Streptomyces erythreus with a broad spectrum of antimicrobial activity. Erythromycin stearate binds to bacterial 50S ribosomal subunits and inhibits RNA-dependent protein synthesis by blockage of transpeptidation and/or translocation reactions, without affecting synthesis of nucleic acid [1][2]. Erythromycin stearate also exhibits antitumor and neuroprotective effect in different fields of research[3][4].

IC₅₀ & Target

Macrolide

In Vitro

Erythromycin stearate inhibits growth of P. falciparum with IC_{50} and IC_{90} values of 58.2 μ M and 104.0 μ M, respectively [1]. Erythromycin stearate (10 μM, 100 μM; 24 h, 72 h) shows antioxidant and anti-inflammatory effects and suppresses the accumulation of 4-HNE (p<0.01) and 8-OHdG (p<0.01), reduces Iba-1 (p<0.01) and TNF-α (p<0.01) expression significantly^[4]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[4]

Cell Line:	Embryos primary cortical neuron (from the cerebral cortices of 17-day-old Sprague- Dawley rat)
Concentration:	10, 100 μΜ
Incubation Time:	24, 72 hours
Result:	Improved the viability of cultured neuronal cells in vitro after 3 hours oxygen-glucose deprivation (OGD).

In Vivo

Erythromycin stearate (gastric intubation; 0.1-50 mg/kg; 30-120 days) decreases tumor growth and prolong the survival time of mice from dose of 5 mg/kg in mice^[3].

Erythromycin stearate (gastric intubation; 5 mg/kg) protects mice alive even at 120 days after inoculation, but shortens mean survival time in tumor-bearing mice by 4-5 days with dose of 50 mg/kg^[3].

Erythromycin stearate (i.h.; single injection; 50 mg/kg) has a protective effect on the rat model with cerebral ischemia reperfusion-injury^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Female ddY mice (6-week-old) with EAC cells or CDF mice (6-week-old) with P388 cells ^[3]

Dosage:	0.1 mg/kg; 0.5 mg/kg; 10 mg/kg; 30 mg/kg; 50 mg/kg
Administration:	Gastric intubation; 30-120 days
Result:	Decreased tumor growth and prolonged the mean survival time of mice from the dose of 5 mg/kg, however, the 50 mg/kg dosage shortened the MST in tumorbearing mice.
Animal Model:	Male Sprague-Dawley rats (8-week-old, 250-300 g) ^[4]
Dosage:	50 mg/kg
Administration:	Subcutaneous single injection
Result:	Reduced infarct volume and edema volume, improved neurological deficit.

CUSTOMER VALIDATION

- Acta Pharm Sin B. 2021 Mar 11.
- Theranostics. 2022 Jan 1;12(3):1187-1203.
- EBioMedicine. 2022 Apr;78:103943.
- Biofabrication. 2023 Aug 8.
- Chemosphere. 2019 Jun;225:378-387.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Gribble MJ, et al. Erythromycin. Med Clin North Am. 1982 Jan;66(1):79-89.
- [2]. Nakornchai S, et al. Activity of azithromycin or erythromycin in combination with antimalarial drugs against multidrug-resistant Plasmodium falciparum in vitro. Acta Trop. 2006 Dec;100(3):185-91. Epub 2006 Nov 28.
- [3]. K Hamada, et al. Antitumor Effect of Erythromycin in Mice. Chemotherapy
- [4]. Katayama Y, et al. Neuroprotective effects of erythromycin on cerebral ischemia reperfusion-injury and cell viability after oxygen-glucose deprivation in cultured neuronal cells. Brain Res. 2014 Nov 7. 1588:159-67.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA