Product Data Sheet

Repirinast

Cat. No.: HY-109544

CAS No.: 73080-51-0

Molecular Formula: $C_{20}H_{21}NO_{5}$ Molecular Weight: 355.38

Target: Histamine Receptor

Pathway: GPCR/G Protein; Immunology/Inflammation; Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description		Repirinast (MY-5116) is an orally active anti-allergic agent. Repirinast inhibits histamine release. Repirinast can be used in the research of bronchial asthma $^{[1][2][3]}$.				
In Vitro	·	Repirinast inhibits histamine release from rat peritoneal mast cells induced by antigen (IC $_{50}$: 0.3 μ M) ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
In Vivo	Repirinast (30 mg/kg, i.p.) inhibits antigen-induced early and late pulmonary responses in guinea pigs ^[1] . Repirinast (30 mg/kg, p.o.) inhibits antigen-induced immediate bronchoconstriction in rats ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.					
	Animal Model:	Guinea $pigs^{[1]}$				
	Dosage:	30 mg/kg				
	Administration:	Intraperitoneal injection (i.p.)				
	Result:	Inhibited leukocyte (predominantly eosinophils) infiltration into bronchial tissue. Blocked antigen-induced airway hyperresponsiveness to inhaled Acetylcholine.				
	Animal Model:	Rat with asthma (challenged with 10 mg/kg antigen OVA) $^{[1]}$				
	Dosage:	30 mg/kg				
	Administration:	Oral administration (p.o.)				
	Result:	Inhibited the decreases in the number Of breath at 30 sec and 1 min after challenge.				

REFERENCES

[1]. N Yamada, et al. Repirinast inhibits antigen-induced early and late pulmonary responses and airway hyperresponsiveness in guinea pigs. Int Arch Allergy Immunol. 1993;100(4):367-72.

[2] Takahashi K Effects of M	IY-5116 on experimental asth	ma in rats and guinea pigs. Areruջ	zi 1986 Oct: 35(10): 1037-46			
[3]. M Takei, et al. Inhibition of histamine release from rat peritoneal mast cells by MY-1250, an active metabolite of Repirinast (MY-5116). Int Arch Allergy Appl Immunol. 1990;93(2-3):237-41.						
			nedical applications. For research u			
	Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA					

Page 2 of 2 www.MedChemExpress.com