Proteins

Inhibitors

GW405833 hydrochloride

Cat. No.: HY-110036A CAS No.: 1202865-22-2 Molecular Formula: $C_{23}H_{25}Cl_3N_2O_3$

Molecular Weight: 483.82

Target: Cannabinoid Receptor

Pathway: GPCR/G Protein; Neuronal Signaling 4°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 125 mg/mL (258.36 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.0669 mL	10.3344 mL	20.6688 mL
	5 mM	0.4134 mL	2.0669 mL	4.1338 mL
	10 mM	0.2067 mL	1.0334 mL	2.0669 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

GW405833 hydrochloride is a potent and selective cannabinoid-2 (CB2) receptor agonist (EC₅₀ = 0.65 nM; maximum $inhibition = 44.6\%). \ GW405833 \ hydrochloride \ produces \ potent \ antihyperalgesic \ effects \ in \ several \ rodent \ models \ of \ pain \ [1][2]$

REFERENCES

- [1]. Li AL, Carey LM, Mackie K, Hohmann AG. Cannabinoid CB2 Agonist GW405833 Suppresses Inflammatory and Neuropathic Pain through a CB1 Mechanism that is Independent of CB2 Receptors in Mice. J Pharmacol Exp Ther. 2017;362(2):296-305.
- [2]. Parlar A, Arslan SO, Doğan MF, et al. The exogenous administration of CB2 specific agonist, GW405833, inhibits inflammation by reducing cytokine production and oxidative stress. Exp Ther Med. 2018;16(6):4900-4908.
- [3]. Marini P, Cascio MG, King A, Pertwee RG, Ross RA. Characterization of cannabinoid receptor ligands in tissues natively expressing cannabinoid CB2 receptors. Br J Pharmacol. 2013;169(4):887-899.
- [4]. Brownjohn PW, Ashton JC. Spinal cannabinoid CB2 receptors as a target for neuropathic pain: an investigation using chronic constriction injury. Neuroscience.

2012;203:180-193.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com