Proteins

Screening Libraries

AZ 12216052

Cat. No.: HY-110122 CAS No.: 1290628-31-7 Molecular Formula: C₁₉H₂₂BrNOS

Molecular Weight: 392.35 mGluR Target:

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Powder -20°C 3 years

4°C 2 years

-80°C In solvent 6 months

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (254.87 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.5487 mL	12.7437 mL	25.4874 mL
	5 mM	0.5097 mL	2.5487 mL	5.0975 mL
	10 mM	0.2549 mL	1.2744 mL	2.5487 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 - Solubility: ≥ 2.5 mg/mL (6.37 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.37 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	AZ 12216052 is a mGluk8 positive allosteric modulator, and helps mGluk8 modulate signaling inputing to retinal ganglion cells. AZ 12216052 exhibits antianxiety effect $^{[1][2][3][4]}$.
IC ₅₀ & Target	mGlu8

 ${\sf mGluR8}$ may modulates the synaptic inputs to retinal ganglion ${\sf cells}^{[1]}.$ In Vitro

AZ 12216052 (10 μM) enhances the peak excitatory currents of ON-, OFF- currents in ON-OFF-ganglion cells, with a dependent way on the intensity of the light stimuli^[1].

AZ 12216052 shows impact of cell differentiation and (0.01-1 µM; 24-48 h) reduces Dox-induced human neuroblastoma SH-

SY5Y cell damage partially [2].

AZ 12216052 stimulates proliferation and attenuates staurosporine (St)- and doxorubicin (Dox)-induced toxicity in UN-SH-SY5Y cells^[2].

AZ12216052 (10 μM) enhances glutamate activity of human mGluR8b receptor expressed in GHEK cells^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[2]

Cell Line:	UN- and RA-SH-SY5Y cells
Concentration:	0.01-1 μM
Incubation Time:	48 hours
Result:	Increased cell viability at 0.1 $\mu\text{M},$ and protected undifferentiated neuroblastoma cells against damaging effects of Iri or Cis.

In Vivo

AZ 12216052 (10 mg/kg; i.p.; 2 h prior to testing) reduces measures of anxiety, without affecting the velocity of the mice^[3]. AZ12216052 (10 mg/kg; i.p.; single dose) exhibits remaining anxiolytic effects, might involve mGluR4 in mGluR8-/- mice, as the mGluR4 PAM (Positive Allosteric Modulator) VU 0155041 also reduces measures of anxiety in wild-type mice^[4]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	WT and Apolipoprotein E-deficient (Apoe-/-) mice (C57BL/6J, 2-month-old) in the elevated zero maze ^[3]	
Dosage:	10 mg/kg	
Administration:	Intraperitoneal injection; singel dose, 2 h prior to testing	
Result:	Reduced measures of anxiety in the elevated zero maze without affecting the velocity o the mice. Reduced the acoustic startle response.	

REFERENCES

- [1]. Reed BT, et al. Differential modulation of retinal ganglion cell light responses by orthosteric and allosteric metabotropic glutamate receptor 8 compounds. Neuropharmacology. 2013 Apr;67:88-94.
- [2]. Jantas D, et al. Allosteric and Orthosteric Activators of mGluR8 Differentially Affect the Chemotherapeutic-Induced Human Neuroblastoma SH-SY5Y Cell Damage: The Impact of Cell Differentiation State. Basic Clin Pharmacol Toxicol. 2018 Oct;123(4):443-451.
- [3]. Duvoisin RM, et al. Acute pharmacological modulation of mGluR8 reduces measures of anxiety. Behav Brain Res. 2010 Oct 15;212(2):168-73.
- [4]. Duvoisin RM, et al. Opposing roles of mGluR8 in measures of anxiety involving non-social and social challenges. Behav Brain Res. 2011 Aug 1;221(1):50-4.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA