EHT 1610

Cat. No.:	HY-111380	
CAS No.:	1425945-60-3	
Molecular Formula:	C ₁₈ H ₁₄ FN ₅ O ₂ S	
Molecular Weight:	383.4	NH S
Target:	DYRK	N
Pathway:	Protein Tyrosine Kinase/RTK	
Storage:	-20°C, protect from light, stored under nitrogen	N ²
	* The compound is unstable in solutions, freshly prepared is recommended.	

SOLVENT & SOLUBILITY

	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
Prepa Stock		1 mM	2.6082 mL	13.0412 mL	26.0824 mL
		5 mM	0.5216 mL	2.6082 mL	5.2165 mL
		10 mM	0.2608 mL	1.3041 mL	2.6082 mL

Description	EHT 1610 is a potent inhibitor of DYRK, with IC ₅₀ s of 0.36 nM (DYRK1A), 0.59 nM (DYRK1B), respectively. EHT 1610 exhibits antileukemia effect, regulates cell cycle and induces cell apoptosis ^{[1]-[4]} .	
IC ₅₀ & Target	IC50: 0.36 nM (DYRK1A), 0.59 nM (DYRK1B) ^[1]	
In Vitro	EHT 1610 induces apoptosis of primary ALL cells that were resistant to cytarabine ^[2] . EHT 1610 dose-dependently induces apoptosis in B- and T-cell lines and primary human pediatric ^[2] . EHT 1610 (; 72 h) inhibits DYRK1A, results loss of DYRK1A-mediated FOXO1 and STAT3 signaling, leading to preferential cell death in leukemic B cells ^[3] . EHT 1610 (2.5-10 μM; 4-5 h) inhibits phosphorylation of FOXO1, STAT3 and cyclin D3, thus regulates late cell-cycle progression, mitochondrial ROS and DNA damage, respectively ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Western Blot Analysis ^[3] Cell Line: MHH-CALL-4 cells	

Product Data Sheet

	Concentration: Incubation Time: Result:	0, 2.5, 5, 10 μΜ		
		4, 5 hours		
		Reduced p-cyclin D3 (Thr283), and p-FOXO1 protein level in a dose-dependent manner.		
In Vivo	EHT 1610 (20 mg/kg/d; i [3] _. MCE has not independe	EHT 1610 (20 mg/kg/d; i.p.; twice a day; 3 weeks) shows antileukemia activity against in leukemic aggressive model in mice [3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Xenograft models of B-ALL in mice (12-14 weeks old) ^[3]		
	Dosage:	20 mg/kg		
	Administration:	Intraperitoneal injection; twice a day, 5 days on, 2 days off; 3 weeks		
	Result:	Reduced leukemic burden by approximately 8% and conferred a modest survival		

CUSTOMER VALIDATION

• Gene. 2020 Oct 20;758:144960.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Thompson B J, et al. The Chromosome 21 Kinase DYRK1A Controls Cell Cycle Exit and Survival During Lymphoid Development and Is a Novel Therapeutic Target In Acute Lymphoblastic Leukemia[C]// Ash Meeting & Exposition. 2013. I

[2]. Bhansali RS, et al. DYRK1A regulates B cell acute lymphoblastic leukemia through phosphorylation of FOXO1 and STAT3. J Clin Invest. 2021 Jan 4;131(1):e135937.

[3]. Foucourt A, et al. Design and synthesis of thiazolo[5,4-f]quinazolines as DYRK1A inhibitors, part II. Molecules. 2014 Sep 26;19(10):15411-39.

[4]. Chaikuad A, et al. An Unusual Binding Model of the Methyl 9-Anilinothiazolo[5,4-f] quinazoline-2-carbimidates (EHT 1610 and EHT 5372) Confers High Selectivity for Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases. J Med Chem. 2016 Nov 23;59(22):

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA