Product Data Sheet

UDP-GlcNAc disodium

Cat. No.: HY-112174
CAS No.: 91183-98-1

Molecular Formula: C₁₇H₂₅N₃Na₂O₁₇P₂

Molecular Weight: 651.32
Target: Others
Pathway: Others

Storage: -20°C, sealed storage, away from moisture

* The compound is unstable in solutions, freshly prepared is recommended.

SOLVENT & SOLUBILITY

In Vitro

 $\label{eq:def-DMSO:250 mg/mL} DMSO:250 mg/mL (383.84 mM; Need ultrasonic) $$H_2O:125 mg/mL (191.92 mM; Need ultrasonic) $$$

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
	1 mM	1.5353 mL	7.6767 mL	15.3534 mL	
ototik ootations	5 mM	0.3071 mL	1.5353 mL	3.0707 mL	
	10 mM	0.1535 mL	0.7677 mL	1.5353 mL	

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: \geq 2.08 mg/mL (3.19 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 2.08 mg/mL (3.19 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (3.19 mM); Clear solution

BIOLOGICAL ACTIVITY

Description UDP-GlcNAc Disodium Salt (UDP- α -D-N-Acetylglucosamine Disodium Salt) is a donor substrate of O-GlcNAc transferase (OGT).

(00

OGT is a nucleocytoplasmic glycosyltransferase (uridine diphospho-N--acetylglucosamine:polypeptide β -N-acetylglucosaminyltransferase or O-GlcNAc transferase) assigned to the GT41 family in the CAZY (Carbohydrate-Active enZYme) database. Using UDP-GlcNAc Disodium Salt (UDP-GlcNAc) as the donor substrate, this enzyme modifies thousands of proteins by adding a unique N-acetylglucosamine residue onto acceptor substrates mainly confined within cytosol and nucleus^[1].

In Vitro

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Signal Transduct Target Ther. 2023 Feb 10;8(1):63.
- Int J Biol Sci. 2022 Jun 21;18(10):4135-4150.
- Laurea Magistrale in Biomedical Engineering, Politecnico di Milano. 2019 Jun.

See more customer validations on $\underline{www.MedChemExpress.com}$

٠		_	_	_		_			_	-
ı	~	-	ы	-	w	-1	N	C	ь,	١.

[1]. Lefebvre T, et al. Antibodies and activity measurements for the detection of O-GlcNAc transferase and assay of its substrate, UDP-GlcNAc. Methods Mol Biol. 2013;1022:147-59.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA