AQX-016A

®

MedChemExpress

Cat. No.:	HY-115620		
CAS No.:	849669-54-1		
Molecular Formula:	$C_{22}H_{32}O_{2}$		
Molecular Weight:	328.49		
Target:	Phosphatase; PI3K; TNF Receptor		
Pathway:	Metabolic Enzyme/Protease; PI3K/Akt/mTOR; Apoptosis		
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	6 months
		-20°C	1 month

НО Н 🦳

HO

Product Data Sheet

BIOLOGICAL ACTIV				
Description	AQX-016A is an orally active and potent SHIP1 agonist. AQX-016A can activate recombinant SHIP1 enzyme in vitro and stimulate SHIP1 activity. AQX-016A also can inhibit the PI3K pathway and TNFa production, can be useful for various inflammatory diseases research ^{[1][2]} .			
IC ₅₀ & Target	CD40	PI3K		
In Vitro	 AQX-016A (5 μg/mL, 30 min) inhibits the PI3K-mediated increase in intracellular PIP3 levels, and reduces PIP3 levels through activation of a 5 'phosphatase enzyme^[1]. AQX-01 6A (0-5 μg/mL, 30 min) inhibits LPS-induced PKB phosphorylation in a SHIP dependent manner^[1]. AQX-016A (0-5 μg/mL, 2 h) significantly inhibits TNFa in both J774 and peritoneal macrophages at both 1 and 5 μg/mL^[1]. AQX-016A (0-6 μg/mL, 30 min) requires SHIP to maximally inhibit TNFa production in BMDM, selectively inhibits TNF production from SHIP1^{+/+} but not SHIP1^{-/-} macrophages^[1]. AQX-016A (0-5 μg/mL, 0-90 min) inhibits TNFa translation^[1]. AQX-016A (0-15 μM, 30 min) increases SHIP1 enzyme activity in vitro and in intact cells, inhibits macrophage and mast-cell activation^[2]. AQX-016A (15 μM, 30 min) inhibits immune cell activation, and inhibits PI3K-dependent macrophage and mast-cell responses in a SHIP-dependent manner^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. Western Blot Analysis 			
	Cell Line:	SHIP1 ^{+/+} and SHIP1 ^{-/-} mast cells ^[2]		
Concentration: Incubation Time:		0, 3, 6, 15, 30 μΜ		
		30 min		
	Result:	Inhibited PIP3-regulated intracellular signal transduction events in SHIP-expressing hematopoietic cells, but not in SHIP-deficient hematopoietic or nonhematopoietic cells. Preferentially inhibited, in a dose-dependent manner, LPS-stimulated PKB phosphorylation in SHIP1 ^{+/+} but not in SHIP1 ^{-/-} macrophages, and inhibited the phosphorylation of PKB, p38 ^{MAPK} and extracellular signal-regulated kinase (ERK) in SHIP1 ^{+/+} but not in SHIP1 ^{-/-} mast cells.		

In Vivo

AQX-016A (20 mg/kg, Orally, once) significantly inhibits plasma TNFa levels, and inhibits inflammation in a mouse model endotoxemia^{[1][2]}.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. [1]Yau, Tien Yin. Novel strategies for antagonizing the phosphatidylinositol-3-kinase pathway in disease. University of British Columbia. 2010.

[2]. Ong CJ, et al. Small-molecule agonists of SHIP1 inhibit the phosphoinositide 3-kinase pathway in hematopoietic cells. Blood. 2007 Sep 15;110(6):1942-9.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA