## EN219-alkyne

| Cat. No.:          | HY-115715A                                                                                | H N   |
|--------------------|-------------------------------------------------------------------------------------------|-------|
| Molecular Formula: | C <sub>22</sub> H <sub>19</sub> BrClN <sub>3</sub> O <sub>3</sub>                         | ~ J O |
| Molecular Weight:  | 488.76                                                                                    |       |
| Target:            | Others                                                                                    |       |
| Pathway:           | Others                                                                                    | =N    |
| Storage:           | Please store the product under the recommended conditions in the Certificate of Analysis. | Br    |

| Description | EN219-alkyne is an alkyne-functionalized EN219 probe. EN219 (HY-P0287A) is a moderately selective synthetic covalent ligand against an N-terminal cysteine (C8) of RNF114 with an IC <sub>50</sub> of 470 nM. EN219 inhibits RNF114-mediated autoubiquitination and p21 ubiquitination <sup>[1][2]</sup> . EN219-alkyne is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| In Vitro    | <ul> <li>EN219-alkyne probe labeling in situ and pulldown studies (in 231MFP cells for example)<sup>[1]</sup></li> <li>1.Treat 231MFP cells with either DMSO vehicle or 50 μM EN219-alkyne probe for 90 min.</li> <li>2.Collect cells in PBS and lysed by sonication.</li> <li>3.Prepare Western blotting samples:</li> <li>Aliquot the lysate (1 mg of protein in 500 μL) per sample, and then add: 10 μL of 5 mM biotin picolylazide and 50 μL of click reaction mix (three parts TBTA 5 mM TBTA in butanol:DMSO (4:1, v/v), one part 50 mM Cu(II)SO4 solution and one part 50 mM TCEP).</li> <li>4.Incubate samples for 1 h at room temperature with gentle agitation.</li> <li>5.After CuAAC, precipitate proteomes by centrifugation at 6,500 g and washed twice in ice-cold methanol (500 μL).</li> <li>6.Spun samples in a prechilled (4⊠) centrifuge at 6,500 g for 4 min, aspiration of excess methanol and subsequent reconstitution of protein pellet in 250 μL PBS containing 1.2% SDS by probe sonication.</li> <li>7.Denature the proteomes at 90% for 5 min, precipitate the insoluble components by centrifugation at 6,500g, and dilute soluble proteome in 1.2 ml PBS (the final concentration of SDS in the sample was 0.2%) to a total volume of 1450 μL, with 50 μL reserved as input.</li> <li>8.Add pre-washed 85 μL 50% streptavidin agarose bead slurry to each sample, and incubate samples overnight at room temperature with gentle agitation.</li> <li>9.Aspirate supernatant from each sample after spinning beads at 6,500 g for 2 min at room temperature.</li> <li>10.Transfer beads to spin columns and wash beads three times with PBS. To elute, boil beads 5 min in 50 μL LDS sample buffer. Collect eluents after centrifugation for immunoblotting analysis.</li> <li>EN219 (1 μM; 90 min) interacts with RNF114 C8, TUBB1 C201, HSPD1 C442, and HIST1H3A C97 demonstrated by isotopic tandem orthogonal proteolysisABPP (isoTOP-ABPP) analysis<sup>[2]</sup>.</li> <li>MCE has not independently confirmed the accuracy of these methods. They are for reference only.</li> </ul> |  |

## REFERENCES

Proteins

Product Data Sheet



[1]. Luo M, et al. Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product function. Cell Chem Biol. 2021 Apr 15;28(4):559-566.e15.

## Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA