MedChemExpress

## PBT434 mesylate

| Cat. No.: | $\mathrm{HY}-120475 \mathrm{~A}$ |
| :--- | :--- |
| CAS No.: | $2387898-69-1$ |
| Molecular Formula: | $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ |
| Molecular Weight: | 398.26 |
| Target: | $\alpha$-synuclein |
| Pathway: | Neuronal Signaling |
| Storage: | $4^{\circ} \mathrm{C}$, sealed storage, away from moisture |
|  | $*$ In solvent: $-80^{\circ} \mathrm{C}, 6$ months; $-20^{\circ} \mathrm{C}, 1$ month (sealed storage, away from moisture) |



## SOLVENT \& SOLUBILITY

## In Vitro

DMSO : $100 \mathrm{mg} / \mathrm{mL}$ (251.09 mM; Need ultrasonic)

|  | Solvent Mass |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Concentration | 1 mg | 5 mg | 10 mg |  |
| Preparing | Stock Solutions | 1 mM | 2.5109 mL | 12.5546 mL |
|  | 5 mM | 0.5022 mL | 25.1092 mL |  |
|  | 10 mM | 0.2511 mL | 1.2555 mL | 5.0218 mL |

Please refer to the solubility information to select the appropriate solvent.

## BIOLOGICAL ACTIVITY

Description

In Vitro

PBT434 methanesulfonate is a potent, orally active and cross the blood-brain barrier $\alpha$-synuclein aggregation inhibitor. PBT434 methanesulfonate can be used as a iron chelator and modulates transcellular iron trafficking. PBT434 methanesulfonate inhibits iron-mediated redox activity and iron-mediated aggregation of $\alpha$-synuclein. PBT434 methanesulfonate prevents the loss of substantia nigra pars compacta neurons (SNpc). PBT434 methanesulfonate has the potential for the research of Parkinson's disease (PD) ${ }^{[1][2]}$.

PBT434 methanesulfonate ( $0-20 \mu \mathrm{M} ; 3 \mathrm{~h}$ ) significantly inhibits $\mathrm{H}_{2} \mathrm{O}_{2}$ production by iron and significantly reduces the rate of Fe-mediated aggregation of $\alpha$-synuclein ${ }^{[1]}$
PBT434 methanesulfonate ( $0-100 \mu \mathrm{M} ; 24 \mathrm{~h}$ ) shows no cytotoxic effects on brain microvascular endothelial cells ${ }^{[2]}$. PBT434 methanesulfonate ( $20 \mu \mathrm{M}$; 24 h ) incrases the expression of total TfR, Cp protein level in hBMVEC ${ }^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.
Cell Cytotoxicity Assay ${ }^{[2]}$

Cell Line:

Concentration:
$1,10,20,50,100 \mu \mathrm{M}$

| Incubation Time: | 24 h |
| :--- | :--- |
| Result: | Showed no cytotoxic effects on brain microvascular endothelial cells. |
| Western Blot Analysis ${ }^{[2]}$ | hBMVEC |
| Cell Line: | $20 \mu \mathrm{M}$ |
| Concentration: | 24 h |
| Incubation Time: | Increased the expression of total TfR, Cp protein level. |
| Result: |  |


| In Vivo | PBT434 methanesulfonate ( $30 \mathrm{mg} / \mathrm{kg}$; p.o.; daily for 21 days) significantly preserved neuron numbers in the 6-OHDA intoxication model and shows significantly fewer rotations in the L-DOPA model, significantly reducing SNpc neuronal loss in the MPTP model ${ }^{[1]}$. <br> MCE has not independently confirmed the accuracy of these methods. They are for reference only. |  |
| :---: | :---: | :---: |
|  | Animal Model: | 12 weeks, 25 g , Male C57BL/6 J mice (6-OHDA intoxication model) ${ }^{[1]}$ |
|  | Dosage: | $30 \mathrm{mg} / \mathrm{kg}$ |
|  | Administration: | P.o.; daily for 21 days (commencing 3 days following induction of lesion) |
|  | Result: | Prevented neuronal loss following 6-OHDA, preserving up to $75 \%$ of the SNpc neurons remaining (both Nissl and tyrosine hydroxylase (TH) positive neurons) after the initial phase of cell death. |
|  | Animal Model: | 12 weeks, 25 g , Male C57BL/6 J mice (MPTP model) ${ }^{[1]}$ |
|  | Dosage: | 1, $3,10,30,80 \mathrm{mg} / \mathrm{kg}$ |
|  | Administration: | P.o.; daily for 21 days (commenced 24 h after induction of lesion) |
|  | Result: | Increased the proportion of SNpc cells rescued, increased there was a trend to improved turning behavior, significantly increased varicosity abundance, prevented the decline in levels of the presynaptic marker synaptophysin (SYNP) in a dose-dependent manner. |

## REFERENCES

[1]. Finkelstein DI, et al. The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease. Acta Neuropathol Commun. 2017 Jun 28;5(1):53.
[2]. Bailey DK, Clark W, Kosman DJ. The iron chelator, PBT434, modulates transcellular iron trafficking in brain microvascular endothelial cells. PLoS One. 2021 Jul 26;16(7):e0254794.

Caution: Product has not been fully validated for medical applications. For research use only.
Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

