Proteins

Product Data Sheet

Bisoprolol fumarate

Cat. No.: HY-120829 CAS No.: 105878-43-1 Molecular Formula: C₂₂H₃₅NO₈ Molecular Weight: 441.52

Target: Adrenergic Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description	Bisoprolol fumarate is a potent, selective and orally active $\beta1$ -adrenergic receptor blocker with little activity on $\beta2$ -receptor. Bisoprolol fumarate has the potential for hypertension, coronary artery disease and stable ventricular dysfunction research [1][2].
IC % Target	Poto 1 advanagie recentor

IC₅₀ & Target Beta-1 adrenergic receptor

In Vitro	Bisoprolol fumarate (2 μM, 1 h) protects myocardial cells (H9c2) from ischemia/reperfusion (I/R) injury ^[2] .
	Bisoprolol fumarate (2 μM, 1 h) reduces the H/R-induced ROS production and apoptosis in H9c2 cells ^[2] .

Bisoprolol fumarate (2 μ M, 1 h) increases AKT and GSK3 β phosphorylation in H9c2 cells [2].

Bisoprolol fumarate (100 μM, 24 h) reverses Epinephrine-inhibited emigration in cholesterol-loaded DCs (dendritic cell) through increasing in β -arrestin 2, CCR7 and PI3K phosphorylation^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay ^[2]	l Viability Assayl ²	
Cell Line:	H9c2 cells	
Concentration:	0.2, 2, 20 μΜ	
Incubation Time:	1h	
Result:	Elevated the survival rates of cardiomyocytes subjected to H/R (hypoxia/reoxygenation) to 73.20%, 90.38%, 81.25% respectively.	
Cell Migration Assay ^[3]		
Cell Line:	DCs	
Concentration:	100 μΜ	
Incubation Time:	6, 12, 24 h	
Result:	Increased the amount of migrating cells by 46.00% (6 h), 64.25% (12 h) and 55.74% (24 h).	

In Vivo

Bisoprolol fumarate (oral administration, 5 mg/kg, for 1 week) increases left ventricular ejection fraction (LVEF) and decreases the heart rate value^[2].

Bisoprolol fumarate (oral gavage, 8 mg/kg, daily for four weeks) shows protective effects against Cadmium-induced myocardial toxicity in rats^[4].

Bisoprolol fumarate (oral gavage, 1 mg/kg, daily for 6 weeks) reversessmall conductance calcium-activated potassium channel (SK) remodeling in a volume-overload rat model^[5].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Ischemia/reperfusion (I/R) injury rats ^[2]
Dosage:	0.5, 5, 10 mg/kg
Administration:	Oral administration, for 1 week, prior to 0.5 h ischemia/4 h reperfusion.
Result:	Reduced infarct size from 44% in I/R group to 31% in treated group.
Animal Model:	Cadmium-induced rats ^[4]
Dosage:	2, 8 mg/kg
Administration:	Oral gavage, daily for four weeks.
Result:	Decreased mean arterial pressure (MAP) at 8 mg/kg.
	Decreased serum biomarkers (ALT, AST) and NF-kB p65 expression and TNF- α levels (cardiac tissue samples) at 8 mg/kg.

CUSTOMER VALIDATION

- Am J Respir Cell Mol Biol. 2023 May 10.
- Mol Neurobiol. 2019 Jan;56(1):367-377.
- J Pharmaceut Biomed. 2020, 113870.
- ACS Omega. August 8, 2022.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Jillian G Baker, et al. The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol. 2005 Feb;144(3):317-22.
- [2]. Jing Wang, et al. Bisoprolol, a β 1 antagonist, protects myocardial cells from ischemia-reperfusion injury via PI3K/AKT/GSK3 β pathway. Fundam Clin Pharmacol. 2020 Dec;34(6):708-720.
- [3]. Hong Yang, et al. Bisoprolol reverses epinephrine-mediated inhibition of cell emigration through increases in the expression of β -arrestin 2 and CCR7 and PI3K phosphorylation, in dendritic cells loaded with cholesterol. Thromb Res. 2013 Mar;131(3):230-7.
- [4]. Jinhua Liu, et al. Protective Effects of Bisoprolol Against Cadmium-induced Myocardial Toxicity Through Inhibition of Oxidative Stress and NF-kB Signalling in Rats. J Vet Res. 2021 Oct 20;65(4):505-511.
- [5]. Yajuan Ni, et al. Bisoprolol reversed small conductance calcium-activated potassium channel (SK) remodeling in a volume-overload rat model. Mol Cell Biochem. 2013 Dec;384(1-2):95-103.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com