Proteins

Screening Libraries

Product Data Sheet

LY2857785

Cat. No.: HY-12293 CAS No.: 1619903-54-6 Molecular Formula: $C_{26}H_{36}N_{6}O$ Molecular Weight: 448.6

Target: CDK; Apoptosis

Pathway: Cell Cycle/DNA Damage; Apoptosis

Storage: Powder -20°C 3 years

2 years

-80°C In solvent 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 10 mg/mL (22.29 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2292 mL	11.1458 mL	22.2916 mL
	5 mM	0.4458 mL	2.2292 mL	4.4583 mL
	10 mM	0.2229 mL	1.1146 mL	2.2292 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1 mg/mL (2.23 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 1 mg/mL (2.23 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1 mg/mL (2.23 mM); Clear solution

BIOLOGICAL ACTIVITY

Description $LY2857785 \ is\ a\ type\ I\ reversible\ and\ competitive\ ATP\ kinase\ inhibitor\ against\ CDK9\ (IC_{50}\ 11\ nM)\ and\ other\ transcription$ kinases CDK8 (IC_{50} 16 nM), and CDK7 (IC_{50} 246 nM).

IC₅₀ & Target CDK9 CDK8 CDK7

> $0.016~\mu M~(IC_{50})$ 0.246 μM (IC₅₀) $0.011~\mu\text{M}~(\text{IC}_{50})$

In Vitro LY2857785 shows good selectivity against a panel of 114 protein kinases, with only 5 other protein kinases inhibited with potency (IC $_{50}$) less than 0.1 μ M, and a total of 14 kinases less than 1 μ M. At the cellular level, LY2857785 inhibits CTD P-Ser2 and CTD P-Ser5 in U2OS cells at IC $_{50}$ s 0.089 (n=13) and 0.042 (n=1) μ M, respectively. However, LY2857785 only induces a moderate G $_2$ -M DNA content increase, from 35% to 55%, with EC $_{50}$ 0.135 μ M. LY2857785 shows potent compound exposure-and time-dependent cell proliferation inhibition in MV-4-11, RPMI8226, and L363 cells. When incubated between 4 to 24 hours, the cell growth inhibition potency reaches a maximal effect at 8 hours with IC $_{50}$ s 0.04, 0.2, and 0.5 μ M for MV-4-11, RPMI8226, and L363 cells, respectively. LY2857785-induced cancer cell apoptosis is also time dependent, reaching maximal potency at 8 hours with IC $_{50}$ 0.5 μ M in L363 cells.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

In HCT116 xenograft tumor-bearing mice, LY2857785 demonstrates dose-dependent RNAP II CTD P-Ser2 inhibition potently with TED50 of 4.4 mg/kg and TEC50 of 0.36 μ M. LY2857785 also shows significant duration of CTD P-Ser2 inhibition for 3 to 6 hours at TED70 (8 mg/kg) in HCT116 and MV-4-11 nude mice xenograft models. In the nude rat MV-4-11 xenograft model, LY2857785 similarly shows dose-dependent CTD P-Ser2 inhibition for 8 hours at TED70 (7 mg/kg) and TED90 (10 mg/kg). LY2857785 demonstrates the most dramatic tumor regression in the AML MV-4-11 xenograft tumor model either by i.v. bolus in mice or i.v. infusion in rats^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay [1]

CDK7 and CDK9 reaction mixtures contain 10 mM Tris-HCl (pH 7.4), 10 mM HEPES, 5 mM DTT, 10 μ M ATP, 0.5 μ Ci 33p-ATP, 10 mM MnCl₂, 150 mM NaCl, 0.01% Triton X-100, 2% DMSO, 0.05 mM CDK7/9ptide, and 2 nM CDK7/Mat1/cyclin H, or 2 nM CDK9/cyclin T1, respectively. CDK8/cyclin C reaction is performed in HEPES 30 mM, DTT 2 mM, MgCl₂ 5 mM, 0.015% Triton X-100, 5 μ M ATP, and 400 nM of RBER-CHKStide containing 20 nM of enzyme. LY2857785 in DMSO is diluted serially 1:3 for dose response. Reactions are carried out in 96-well polystyrene plates. The reactions are incubated at room temperature for 60 minutes and followed by termination with 10% H3PO4 or 10% trichloroacetic acid (TCA). For the filter binding assay, reactions are transferred to 96-well filter plates and measured by Microbeta scintillation counter. For ADP Transcreener Fluorescent Polarization Assays, reactions are quenched with ADP detection mix, incubated 2 hours at room temperature and then FP is measured at $\lambda_{\rm ex}$ =610 nm, $\lambda_{\rm em}$ =670 nm on a Tecan Ultra 384 plate reader. The concentration of ADP product is calculated from millipolarization (μ P) using a prepared ADP/ATP dilution series as a standard curve. Kinase profiling are carried out in 96-well polystyrene plates. Briefly, in a final volume of 25 μ L the enzyme is incubated with the appropriate buffer, peptide substrate, and the diluted LY2857785. Reactions are initiated by the addition of ATP/[33 P] and the ATP mix is incubated at room temperature for 40 minutes. Reactions are quenched with the addition 5 μ L of 3% phosphoric acid, 10 μ L of the reaction are spotted onto a filtermat, washed 3 times for 5 minutes in 75 mM phosphoric acid and once in methanol. Once the filters are dry, they are submitted to scintillation counting[11].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Assay [1]

Solid tumor cells are plated in poly-D-lysine coated and hematologic cell lines are seeded in noncoated 96-well plates overnight before being treated with compounds (e.g, LY2857785). Solid tumor cells are fixed with Prefer for 20 minutes at room temperature and permeated with 0.1% Triton X-100 in PBS for 15 minutes. Caspase-3 expression is measured by immunofluorescence with antiactivated caspase-3. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) activity is measured with In Situ Cell Death Detection Kit. Both assays are analyzed on Acumen Explorer laser-scanning fluorescence microplate cytometer. Hematologic tumor cells are assayed for cell viability with CellTiter-Glo Luminescent Cell Viability Assay^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [1]

Mice and Rats^[1]

For xenograft models, human cancer cells U87MG, MV-4-11, A375, and HCT116 are implanted into female nude rats or athymic nude female mice. The animals are dosed with saline, Rapamycin, or LY2857785, respectively. MV-4-11 xenografts in nude mice are treated by LY2857785 (4, 8, and 18 mg/kg) i.v. bolus. MV-4-11 xenografts in nude rats are treated with LY2857785 (3, 6, and 9 mg/kg) 4-hour i.v. infusion. An untreated vehicle control group is administered saline i.v. every 3 days. Flow cytometry analysis is conducted using Beckman Coulter's CXP software. Statistical significance of the effect of LY2857785 and/or control compounds is assessed by Dunnett method, one-way ANOVA.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cell Chem Biol. 2018 Feb 15;25(2):135-142.e5.
- Sci Rep. 2018 Jun 21;8(1):9472.
- Biochem Biophys Res Commun. 2019 Jun 11;513(4):967-973.
- Oncotarget. 2017 Nov 3;8(63):107206-107222.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Yin T, et al. A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol Cancer Ther. 2014 Jun;13(6):1442-56. Mol Cancer Ther. 2014 Jun;13(6):1442-56.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA