Alloxazine

Cat. No.: HY-123085 CAS No.: 490-59-5 Molecular Formula: $C_{10}H_{6}N_{4}O_{2}$ Molecular Weight: 214.18

Target: Adenosine Receptor Pathway: GPCR/G Protein

Storage: Powder -20°C 3 years

2 years

-80°C In solvent 6 months

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 5 mg/mL (23.34 mM; ultrasonic and warming and heat to 60°C)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	4.6690 mL	23.3449 mL	46.6897 mL
Stock Solutions	5 mM	0.9338 mL	4.6690 mL	9.3379 mL
	10 mM	0.4669 mL	2.3345 mL	4.6690 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description Alloxazine is a selective A2b antagonist. Alloxazine completely block 5'N-Ethylcarboxamido adenosine (NECA)-mediated cyclic AMP accumulation with an IC $_{50}$ of 2.9 μ M. Alloxazine can be used for the research of cancer [1][2].

IC₅₀ & Target IC50: 2.9 μ M (AMP)^[1]

In Vitro Alloxazine (0-30 μ M, 20 min) inhibits cyclic AMP production in PGT- β cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line:	PGT-β cells
Concentration:	0-30 μM
Incubation Time:	20 min

	Result:	Inhibited the cyclic AMP generation concentration-dependently with an IC $_{50}$ of 2.9 μM_{\odot}		
) Vivo		Alloxazine (1 μ mol/L; cortical surface suffusion for 0-20 min) suppresses NECA-induced vasodilation ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Male Sprague-Dawley rats ^[2]		
	Dosage:	1 μmol/L		
	Administration:	Cortical surface suffusion; 1 μmol/L once		
	Result:	Significantly suppressed vasodilation with increased EC ₂₅ value of 0.60 μmol/L.		

REFERENCES

[1]. Brackett LE, Daly JW. Functional characterization of the A2b adenosine receptor in NIH 3T3 fibroblasts. Biochem Pharmacol. 1994 Mar 2;47(5):801-14.

[2]. Shin HK, et al. Role of adenosine A(2B) receptors in vasodilation of rat pial artery and cerebral blood flow autoregulation. Am J Physiol Heart Circ Physiol. 2000 Feb;278(2):H339-44.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA