ISX-9 (GMP)

Cat. No.: CAS No.: Molecular Formula: Molecular Weight: Target: Pathway: Storage:	HY-12323G 832115-62-5 C ₁₁ H ₁₀ N ₂ O ₂ S 234.27 Calcium Channel Membrane Transporter/Ion Channel; Neuronal Signaling Please store the product under the recommended conditions in the Certificate of Analysis.	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & $
---	--	---

BIOLOGICAL ACTIVITY

Description	voltage-gated Ca ²⁺ char differentiation of Notch- enhancing the proliferat arborization of adult-ge neurogenesis and block dependent on myocyte- Molecular exploration o cells) suggested the invo mice) treatment improv	ISX-9 (Isoxazole 9) is a potent inducer of adult neural stem cell differentiation. ISX-9 activates Ca ²⁺ influx through both voltage-gated Ca ²⁺ channels and NMDA receptors and increases neuroD expression. ISX-9 also induces cardiomyogenic differentiation of Notch-activated epicardium-derived cells (NECs) ^{[1][2][3]} . <i>In Vitro:</i> ISX-9 promotes neurogenesis in vivo, enhancing the proliferation and differentiation of hippocampal subgranular zone (SGZ) neuroblasts, and the dendritic arborization of adult-generated dentate gyrus neurons. At 2.5-20 μM, ISX-9 has been shown to dose-dependently trigger neurogenesis and block gliogenesis in adult rat hippocampal stem cells through a calcium-activated signaling pathway dependent on myocyte-enhancer factor 2-dependent gene expression ^[1] . Molecular exploration of ISX-9-induced regulation of neurogenesis (via FACS and microarray of SGZ stem and progenitor cells) suggested the involvement of the myocyte-enhancer family of proteins (Mef2) ^[1] . <i>In Vivo:</i> ISX-9 (20 mg/kg; for 12 days; mice) treatment improves hippocampal function. ISX-9 enhances spatial memory ability in the Morris water maze test. ISX-9 enhances hippocampal neurogenesis and memory in vivo, and its effects are reliant on Mef2 ^[1] .	
In Vitro	ISX-9 (20 μM; for 7 days) can induce generated cardiac progenitor cells (CPCs) starting fromhuman-induced pluripotent stem cells (hiPSCs) ^[1] . ISX-9 (20 μM) induces CPCs to secrete extracellular vesicles (EV) ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Western Blot Analysis ^[1]		
	Cell Line:	hiPSCs, CPCs	
	Concentration:	20 μΜ	
	Incubation Time:		
	Result:	Showed EV were enriched in EV-specific markers Tsg101, CD9, Hsp70, and flotillin-1.	
In Vivo		rived EV reversed cardiac remodeling in infarcted mice ^[1] . t independently confirmed the accuracy of these methods. They are for reference only.	
	Animal Model:	NOD/SCID Mice ^[1]	
	Dosage:	20 μL (CPC ^{ISX-9})	

Product Data Sheet

Administration:	CPC ^{ISX-9} were injected into the myocardium along the border zone.
Result:	(EV-CPC ^{ISX-9}) Promoted CM proliferation and angiogenesis and reversed ventricula remodeling in mice post MI.

REFERENCES

[1]. Wanling Xuan, et al. miRNAs in Extracellular Vesicles from iPS-Derived Cardiac Progenitor Cells Effectively Reduce Fibrosis and Promote Angiogenesis in Infarcted Heart. Stem Cells Int. 2019 Nov 11;2019:3726392. doi: 10.1155/2019/3726392. eCollection 2019.

[2]. Maria Magdalena Barreca, et al. Mesenchymal and Induced Pluripotent Stem Cells-Derived Extracellular Vesicles: The New Frontier for Regenerative Medicine? Cells. 2020 May 8;9(5):1163.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA