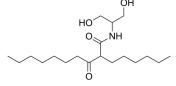
Proteins

K6PC-5

Cat. No.: HY-124042 CAS No.: 756875-51-1 Molecular Formula: C₁₉H₃₇NO₄ Molecular Weight: 343.5

Target: SphK; Filovirus


Pathway: Immunology/Inflammation; Anti-infection

Storage: Powder -20°C 3 years

> 4°C 2 years

-80°C In solvent 6 months

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (291.12 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.9112 mL	14.5560 mL	29.1121 mL
	5 mM	0.5822 mL	2.9112 mL	5.8224 mL
	10 mM	0.2911 mL	1.4556 mL	2.9112 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.28 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (7.28 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.28 mM); Clear solution

BIOLOGICAL ACTIVITY

Description K6PC-5, a ceramide derivative, is a sphingosine kinase 1(SPHK1) activator and elicites a rapid transient increase in intracellular calcium levels. K6PC-5 has the potential for skin diseases involving abnormal keratinocyte, and

neurodegeneration and virus infection research^{[1][2][3]}.

IC₅₀ & Target SphK1

In Vitro K6PC-5 (1-10 μM; 24 h) increases the involucrin and loricrin levels in a dose-dependent manner in normal human epidermal keratinocytes (NHEKs). K6PC-5 promotes differentiation and proliferation of keratinocytes via intracellular Ca^{2+} signaling. In addition, K6PC-5 stimulates the phosphorylation of p42/44 extracellular signal-regulated kinase and c-Jun N-terminal kinase^[1].

K6PC-5 (1-10 μM; 24 h) promotes fibroblasts proliferation and collagen synthesis in human fibroblasts. K6PC-5 induces intracellular Ca^{2+} concentration ($[Ca^{2+}]_i$) oscillations in human fibroblasts^[2].

K6PC-5 (10, 25, and 50 μM; 48 h) significantly attenuates EBOV-induced infection in EBOV-infected EA.hy926 cells. K6PC-5 significantly reduces the virus titers in supernatants of infected cells and strikingly decreased the amount of VP40 in a concentration-dependent manner^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[1]

Cell Line:	Normal human epidermal keratinocytes (NHEKs)	
Concentration:	1 μΜ, 5 μΜ, 10 μΜ	
Incubation Time:	24 h	
Result:	Increased the involucrin and loricrin levels in a dose-dependent manner.	

Cell Proliferation Assay^[2]

Cell Line:	Human fibroblasts	
Concentration:	1 μΜ, 5 μΜ, 10 μΜ	
Incubation Time:	24 h	
Result:	Promoted fibroblast proliferation and procollagen production in human fibroblasts significantly.	

In Vivo

In intrinsically aged hairless mice (56 weeks old), 1% K6PC-5 is applied topically for 2 weeks. This K6PC-5 treatment significantly increases both the number of dermal fibroblasts and collagen production. As a consequence, dermal thickness also increased significantly^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Intrinsically aged hairless mice (56 weeks old) ^[2]	
Dosage:	1% (vehicle (PEG:EtOH = 7:3))	
Administration:	Topical application; twice daily for 2 weeks	
Result:	Enhanced fibroblast proliferation, collagen production, and eventually increased derma thickness.	

REFERENCES

- [1]. Kwon YB, et al. Novel synthetic ceramide derivatives increase intracellular calcium levels and promote epidermal keratinocyte differentiation. J Lipid Res. 2007 Sep;48(9):1936-43.
- [2]. Jong-Kyung Youm, et al. K6PC-5, a sphingosine kinase activator, induces anti-aging effects in intrinsically aged skin through intracellular Ca2+ signaling. J Dermatol Sci. 2008 Aug;51(2):89-102.
- [3]. Imre G, et al. The sphingosine kinase 1 activator, K6PC-5, attenuates Ebola virus infection. iScience. 2021 Mar 5;24(4):102266.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com