OHM1

Cat. No.: HY-124722 CAS No.: 1450995-09-1

Target: HIF/HIF Prolyl-Hydroxylase

Pathway: Metabolic Enzyme/Protease

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description

OHM1 is an analog of HIF1 α CTAD that inhibits its binding with p300/CBP. OHM1 targets CH1 domain with an affinity of 0.53 μ M^[1].

In Vitro

OHM1 (1-20 μ M; 24 h) results in a dose-dependent reduction in the HIF promoter activity, and reduces the level of HIF1 α transcriptional activity under hypoxia to that observed under normoxia at 20 μ M in MDA-MB-231 cells^[1].

OHM1 down-regulates hypoxia-inducible gene expression^[1].

OHM1 (10 μ M) down-regulates multiple genes implicated in angiogenesis, apoptosis, cell proliferation, and invasion, along with several cancer-specific markers in the A549 non-small-cell lung cancer cell line^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

RT-PCR^[1]

Cell Line:	A549
Concentration:	10 μΜ
ncubation Time:	24 h
Result:	Down-regulated the mRNA expression levels of the critical angiogenesis regulator vascular endothelial growth factor (VEGFA) by 80%. Decreased lysyl oxidase (LOX) and glucose transporter 1 (GLUT1) expression.

In Vivo

OHM1 (15 mg/kg; i.p.; every other day for 15 injections) reduces MDA-MB-231 tumor volume in mice^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	BALB/c mice, MDA-MB-231 xenograft model ^[1]
Dosage:	15 mg/kg
Administration:	Intraperitoneal injection, every other day for 15 injections
Result:	Reduced the median tumor volume by roughly 50% compared with the untreated group. Did not cause measurable changes in animal body weight or other signs of toxicity in tumor-bearing animals, nor increased the metastasis rate.

REFERENCES		
[1]. Lao BB, et al. In vivo modulation of hypoxia-inducible signaling by topographical helix mimetics. Proc Natl Acad Sci U S A. 2014 May 27;111(21):7531-6.		
	Caution: Product has not been fully validated for medical applications. For research use only.	
	Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com	
	Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA	

Page 2 of 2 www.MedChemExpress.com