ABC34

MedChemExpress

Cat. No.:	HY-125143		
CAS No.:	1831135-56	-8	
Molecular Formula:	$C_{_{31}}H_{_{33}}N_{_5}O_{_6}$		
Molecular Weight:	571.62		
Target:	MAGL		
Pathway:	Metabolic Enzyme/Protease		
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	6 months
		-20°C	1 month

SOLVENT & SOLUBILITY

	Preparing Stock Solutions	Mass Solvent Concentration	1 mg	5 mg	10 mg
		1 mM	1.7494 mL	8.7471 mL	17.4941 mL
		5 mM	0.3499 mL	1.7494 mL	3.4988 mL
	10 mM	0.1749 mL	0.8747 mL	1.7494 mL	
Ple	ase refer to the sol	ubility information to select the app	propriate solvent.		
		propriate solvent. n oil	0.8747 mL		

BIOLOGICAL ACTIV	
Description	ABC34 is an inactive control compound of JJH260. ABC34 does not inhibit the fluorophosphonate reactivity or fatty acid esters of hydroxy fatty acid (FAHFA) hydrolysis activity of AIG1. ABC34 can inhibit both ABHD6 and PPT122 ^[1] .

REFERENCES

[1]. William H Parsons, et al. AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs. Nat Chem Biol. 2016 May;12(5):367-372.

Product Data Sheet

 $(\mathbf{x}_{\mathbf{n}},\mathbf{y},\mathbf{y}_{\mathbf{n}},\mathbf{y}_{\mathbf{n}},\mathbf{y}_{\mathbf{n}},\mathbf{y}_{\mathbf{n}},\mathbf{y}_{\mathbf{n}$

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA