Inhibitors

E6446 dihydrochloride

Cat. No.: HY-12756A

CAS No.: 1345675-25-3 Molecular Formula: $C_{27}H_{37}Cl_{2}N_{3}O_{3}$

Molecular Weight: 522.51

Target: Toll-like Receptor (TLR); Stearoyl-CoA Desaturase (SCD) Pathway: Immunology/Inflammation; Metabolic Enzyme/Protease

-20°C Storage: Powder 3 years

4°C 2 years

In solvent -80°C 2 years

> -20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 7.6 mg/mL (14.55 mM; Need ultrasonic and warming)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9138 mL	9.5692 mL	19.1384 mL
	5 mM	0.3828 mL	1.9138 mL	3.8277 mL
	10 mM	0.1914 mL	0.9569 mL	1.9138 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description E6446 dihydrochloride is a potent and orally acitve TLR7 and TLR9 antagonist, used in the research of deleterious

inflammatory responses. E6446 dihydrochloride is also a potent SCD1 inhibitor (KD: 4.61 μM), significantly inhibiting adipogenic differentiation and hepatic lipogenesis through SCD1-ATF3 signaling. E6446 dihydrochloride also improves liver pathology in high-fat diet (HFD)-fed mice and may be useful in the study of non-alcoholic fatty liver disease (NAFLD)^{[1][2][3]}.

IC₅₀ & Target TLR7 TLR9

In Vitro

E6446 dihydrochloride is a potent and orally acitve TLR7 and TLR9 inhibitor. E6446 potently suppresses DNA stimulation of HEK:TLR9 cells, with an IC₅₀ value of 10 nM, but is significantly less effective at suppressing LPS endotoxin stimulation of HEK:TLR4 cells or R848 stimulation of HEK:TLR7 cells. E6446 potently inhibits IL-6 production induced by CpG2216 but is ineffective against induction by the TLR3 ligand poly inosine-cytosine. The ability of E6446 to inhibit TLR7 is ligand dependent, E6446 is a potent inhibitor of IL-6 induction by RNA but a relatively poor inhibitor of IL-6 induction by the small molecule imidazoquinoline ligand R-848. E6446 suppress TLR9-DNA interaction in vitro, with an IC $_{50}$ in the 1 to 10 μ M range $^{[1]}$. E6446 (0.01-0.03 μ M) specifically inhibits TLR9 activation with CpG ODN 2006, and blocks TLR7/8 activated by the imidazoquinoline compound R848 at 2-8 μ M. E6446 reduces 50% of TLR4 activation at 30 μ M, and shows IC $_{50}$ s of 0.01 μ M

and 0.23 μ M in HEK-TLR9 cells stimulated with oligo 2006 and in human PBMCs stimulated with oligo 2216, respectively^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

E6446 (20 mg/kg, p.o.) almost cmlpletely inhibits CpG1668-induced IL-6 production, and dose-dependently suppresses the development of ANA (anti-nuclear antibodies) in mice at 20 and 60 mg/kg $^{[1]}$. E6446 (20, 60 mg/kg, p.o.) dose-dependently inhibits TLR9 signaling in mice. E6446 (60, 120 mg/kg, p.o.) prevents hyperresponsiveness of TLRs and LPS-induced septic shock in rodent malaria, diminishes TLR responsiveness during acute malaria, suppresses activation of both TLR7 and TLR9 $^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [1]

E6446 is assayed for the suppression of BALB/c mouse spleen interleukin-6 (IL-6) production in response to stimulation by oligonucleotide CpG1668. E6446 is added to dissociated splenocytes (5×10^5 per well in complete RPMI/10% fetal bovine serum in a 96-well plate) before addition of TLR agonists. Cells are stimulated for 72 hours, and supernatants are removed for ELISA analysis of IL-6. Mouse bone marrow-derived dendritic cells (BMDCs) are generated by culturing BALB/c marrow cells in RPMI containing 100 ng/mL Flt3 ligand for 7 days. Cells (1×10^5) in $50 \,\mu$ L are assayed for IL-6 production after overnight or 24-hour stimulation with various TLR ligands. For studies using human peripheral blood mononuclear cells, Ficoll-separated mononuclear cells are isolated from healthy volunteer donors, washed, and plated with stimulatory oligonucleotide CpG2216 in complete RPMI for 72 hours. Interferon in supernatant is quantified by ELISA^[1].

Animal Administration [1]

Mice^[1]

MRL/lpr mice are dosed orally five times a week with 20 or 60 mg/kg E6446 or 60 mg/kg hydroxychloroquine beginning at 5 weeks of age. Cytoxan is administered at 50 mg/kg i.p. every 10 days. A serum sample is taken immediately before the beginning of treatment to monitor changes in autoreactive antibodies. Subsequently, serum samples are collected approximately monthly and analyzed for anti-dsDNA by ELISA after 1:500 dilution. Body weights and urine samples are taken at the same interval, and proteinuria is assessed by ChemStrips. Anti-nuclear antibodies (ANA) are assessed using commercially available HEp2 slide kits, with serum diluted to 1:100 in kit buffer. ANA scores are read blinded^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

• Cell Commun Signal. 2023 Sep 30;21(1):268.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Lamphier M, et al. Novel small molecule inhibitors of TLR7 and TLR9: mechanism of action and efficacy in vivo. Mol Pharmacol. 2014 Mar;85(3):429-40.
- [2]. Franklin BS, et al. Therapeutical targeting of nucleic acid-sensing Toll-like receptors prevents experimental cerebral malaria. Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3689-94.
- [3]. Wang W, et al. Identification of novel SCD1 inhibitor alleviates nonalcoholic fatty liver disease: critical role of liver-adipose axis. Cell Commun Signal. 2023 Sep 30;21(1):268.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com