Product Data Sheet

3,3'-Diiodo-L-thyronine

Cat. No.: HY-129974 CAS No.: 4604-41-5 Molecular Formula: C₁₅H₁₃I₂NO₄

Molecular Weight:

525.08 Target: COX; Endogenous Metabolite

Pathway: Immunology/Inflammation; Metabolic Enzyme/Protease

Storage: Powder -20°C 3 years

2 years -80°C 2 years

In solvent

-20°C 1 year

		O
HO		\mathcal{T} OF
	0	NH_2

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (190.45 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9045 mL	9.5224 mL	19.0447 mL
	5 mM	0.3809 mL	1.9045 mL	3.8089 mL
	10 mM	0.1904 mL	0.9522 mL	1.9045 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.76 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (4.76 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.76 mM); Clear solution

BIOLOGICAL ACTIVITY

Description 3,3'-Diiodo-L-thyronine (3,3'-T2) is an endogenous metabolite of thyroid hormone. 3,3'-Diiodo-L-thyronine significantly enhances COX activity^{[1][2]}.

Human Endogenous COX IC₅₀ & Target Metabolite

3,3'-Diiodo-L-thyronine (3,3'-T2; 1 μM; 30 min) significantly enhances COX activity^[2].

In Vitro

3,3'-Diiodo-L-thyronine of 1 μ M has the maximum effect^[2].

3,3'-Diiodo-L-thyronine is produced by further degradation of T3 and rT3^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Lorenzini L, et al. Assay of Endogenous 3,5-diiodo-L-thyronine (3,5-T2) and 3,3'-diiodo-L-thyronine (3,3'-T2) in Human Serum: A Feasibility Study. Front Endocrinol (Lausanne). 2019 Feb 19;10:88.

[2]. Lanni A, et al. Rapid stimulation in vitro of rat liver cytochrome oxidase activity by 3,5-diiodo-L-thyronine and by 3,3'-diiodo-L-thyronine. Mol Cell Endocrinol. 1994 Feb;99(1):89-94.

[3]. Chen X, et al. Simultaneous quantification of T4, T3, rT3, 3,5-T2 and 3,3'-T2 in larval zebrafish (Danio rerio) as a model to study exposure to polychlorinated biphenyls. Biomed Chromatogr. 2018 Jun;32(6):e4185.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com