Product Data Sheet

Fosnetupitant chloride monohydrochloride

Cat. No.: HY-133206A CAS No.: 1643757-72-5 Molecular Formula: $C_{31}H_{37}Cl_{2}F_{6}N_{4}O_{5}P$

Molecular Weight: 761.52

Target: Neurokinin Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (131.32 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.3132 mL	6.5658 mL	13.1316 mL
	5 mM	0.2626 mL	1.3132 mL	2.6263 mL
	10 mM	0.1313 mL	0.6566 mL	1.3132 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (3.28 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (3.28 mM); Clear solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: 2.5 mg/mL (3.28 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description	Fosnetupitant chloride monohydrochloride (Pronetupitant chloride monohydrochloride) is an NK1 antagonist with pK_i values of 9.5, 6.1 for human NK1 and NK3 receptor, respectively. Fosnetupitant chloride monohydrochloride is a methylene phosphate prodrug of Netupitant ^[1] .		
IC ₅₀ & Target	hNK1 9.5 (pKi)	hNK3 6.1 (pKi)	
In Vitro	Fosnetupitant chloride monohydrochloride displays a micromolar affinity for the 5-HT6 (pK _i - 5.2) receptor and type L Ca ²⁺ channels (pK _i - 5.7) and does not bind all the other proteins investigated ^[1] .		

	MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Fosnetupitant chloride monohydrochloride (i.v.) is converted in few minutes to Netupitant (HY-16346) invivo ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Ruzza C, et al. In vitro and in vivo pharmacological characterization of Pronetupitant, a prodrug of the neurokinin 1 receptor antagonist Netupitant. Peptides. 2015 Jul;69:26-32.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com