AICAR

Cat. No.:
HY-13417

CAS No.:
2627-69-2

Molecular Formula:
$C_9H_{14}N_4O_5$

Molecular Weight:
258.23

Target:
AMPK; Autophagy; Mitophagy; YAP; Endogenous Metabolite

Pathway:
Epigenetics; PI3K/Akt/mTOR; Autophagy; Stem Cell/Wnt; Metabolic Enzyme/Protease

Storage:
- **Powder**
 - -20°C: 3 years
 - 4°C: 2 years
- **In solvent**
 - -80°C: 2 years
 - -20°C: 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 125 mg/mL (484.06 mM; Need ultrasonic)

H_2O: 65 mg/mL (251.71 mM; Need ultrasonic and warming)

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>Solvent Concentration</th>
<th>Mass 1 mg</th>
<th>Mass 5 mg</th>
<th>Mass 10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 mM</td>
<td>3.8725 mL</td>
<td>19.3626 mL</td>
<td>38.7252 mL</td>
</tr>
<tr>
<td></td>
<td>5 mM</td>
<td>0.7745 mL</td>
<td>3.8725 mL</td>
<td>7.7450 mL</td>
</tr>
<tr>
<td></td>
<td>10 mM</td>
<td>0.3873 mL</td>
<td>1.9363 mL</td>
<td>3.8725 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: PBS
 Solubility: 110 mg/mL (425.98 mM); Clear solution; Need ultrasonic

2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
 Solubility: ≥ 2.08 mg/mL (8.05 mM); Clear solution

3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 Solubility: ≥ 2.08 mg/mL (8.05 mM); Clear solution

4. Add each solvent one by one: 10% DMSO >> 90% corn oil
 Solubility: ≥ 2.08 mg/mL (8.05 mM); Clear solution

BIOLOGICAL ACTIVITY

Description
AICAR (Acadesine) is an adenosine analog and a AMPK activator. AICAR regulates the glucose and lipid metabolism, and inhibits proinflammatory cytokines and iNOS production. AICAR is also an autophagy, YAP and mitophagy inhibitor\(^1\)\(^2\).

<table>
<thead>
<tr>
<th>IC(_{50}) & Target</th>
<th>AMPK</th>
<th>Autophagy</th>
<th>Mitophagy</th>
<th>Human Endogenous</th>
</tr>
</thead>
</table>
Metabolite

In Vitro

HepG2 cells are treated with various concentrations of AICAR (0.1-1.0 mM) for 12, 24, and 48 h, respectively. The expression level of IR-β significantly decreases with 0.25, 0.5, and 1.0 mM of AICAR at 48 h to 50%, 53%, and 46% of the control, respectively[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Fourteen-week-old male, lean (L; 31.3 g body wt) wild-type and ob/ob (O; 59.6 g body wt) mice are injected with the AMP-activated kinase (AMPK) activator AICAR (A) at 0.5 mg/g per day or saline control (C) for 14 days. At 24 h after the last injection (including a 12-h fast), all mice are killed, and the plantar flexor complex muscle (gastrocnemius, soleus, and plantaris) is excised for analysis. Muscle mass is lower in OC (159±12 mg) than LC, LA, and OA (176±10, 178±9, and 166±16 mg, respectively) mice, independent of a body weight change[3]. The kidney weight is significantly higher in the untreated group when compared with both the exercise and AICAR (0.5 mg/g body wt) groups. The heart weight is higher in the exercise group than in the other groups, whereas the liver weight is significantly higher in the AICAR-treated group when compared with the exercise and untreated groups[4]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [1]

HepG2 cells (5×10^5 cells) are plated in 6-well culture plate dishes and then are incubated in the serum-free media for 12 h before transfection. One microgram of plasmid is transfected with FuGENE6 Transfection Reagent. After 5 h of transfection, the culture media are removed and then media supplemented with or without AICAR (0.1-1.0 mM) are added to each well. The stimulation media are changed every 24 h[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [2][3]

Mice[2]

Fourteen-week-old lean (Lep^{ob/+} or Lep^{ob/+}) and ob/ob (Lep^{ob}/Lep^{ob}) male mice are used. After the 14-day experimental treatment (24 h after AICAR injection, including a 12-h fast), the plantar flexor complex muscle is cleanly (tendon-to-tendon) excised from an anesthetized mouse. The muscle is quickly weighed and then processed for histology or frozen in liquid nitrogen and stored at -80°C. The anesthetized mice are killed by transection of the diaphragm and removal of the entire heart, after blood collection via needle puncture directly into the heart. AICAR or saline (control) is injected subcutaneously into the lateral distal portion of the back. AICAR is administered at 0.5 mg/g per day one time for 14 days. Saline (control) is injected in volumes identical to those used for AICAR treatment in a manner identical to that of AICAR treatment. Body weight is measured prior to death.

Rats[3]

Male 5-week-old ZDF rats are either subcutaneously injected with a single dose of AICAR (0.5 mg/g body wt) or underwent a single bout of treadmill running (60 min, speed of 25 m/min at a 5% incline). Untreated ZDF rats serve as controls (n=5 in each group). One hour after the subcutaneous AICAR injection or immediately after treadmill running, rats are killed by cervical dislocation. To avoid any effect of muscle spasm and hypoxia, red and white gastrocnemius muscles are removed within seconds and immediately freeze clamped for later determination of AMPK activity.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cell Metab. 2019 Jul 2;30(1):157-173.e7
REFERENCES

Caution: Product has not been fully validated for medical applications. For research use only.
Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA