Product Data Sheet

EST73502 monohydrochloride

Cat. No.: HY-134189A CAS No.: 2535970-65-9 Molecular Formula: $C_{19}H_{27}ClF_{2}N_{2}O_{2}$

Molecular Weight: 388.88

Sigma Receptor; Opioid Receptor Target: Pathway: Neuronal Signaling; GPCR/G Protein

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (128.57 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.5715 mL	12.8574 mL	25.7149 mL
	5 mM	0.5143 mL	2.5715 mL	5.1430 mL
	10 mM	0.2571 mL	1.2857 mL	2.5715 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.43 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.43 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.43 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	EST73502 monohydrochloride is a selective, orally active and blood-brain barrier (BBB) penetrant dual μ -opioid receptor (MOR) agonist and σ 1 receptor (σ 1R) antagonist, with K_i s of 64 nM and 118 nM for MOR and σ 1R, respectively. EST73502 monohydrochloride has antinociceptive activity ^[1] .
IC ₅₀ & Target	Ki: 64 nM (MOR), 118 nM $(\sigma 1R)^{[1]}$
In Vivo	EST73502 monohydrochloride (10-40 mg/kg; p.o.) shows a dose-response analgesic effect reaching a maximum of 64% and an EC $_{50}$ of 14 mg/kg in the paw pressure test in CD1 male mice ^[1] . EST73502 monohydrochloride (5 mg/kg; i.p.; twice a day; for 10 days) attenuates partial sciatic nerve ligation (PSNL)-

induced mechanical allodynia in male CD1 mice $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male CD1 mice, PSNL model ^[1]	
Dosage:	5 mg/kg	
Administration:	Intraperitoneal injection, twice a day, for 10 days	
Result:	Attenuated the expression of mechanical allodynia induced by PSNL, reaching a maximal effect of 56%.	

REFERENCES

[1]. Mónica García, et al. Discovery of EST73502, a Dual μ -Opioid Receptor Agonist and σ 1 Receptor Antagonist Clinical Candidate for the Treatment of Pain. J Med Chem. 2020 Oct 16.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA