MedChemExpress

Molnupiravir- d_{7}

Cat. No.:	$\mathrm{HY}-135853 \mathrm{~S}$	
Molecular Formula:	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{D}_{7} \mathrm{~N}_{3} \mathrm{O}_{7}$	
Molecular Weight:	336.35	
Target:	SARS-CoV; Influenza Virus	
Pathway:	Anti-infection	
Storage:	Powder $-20^{\circ} \mathrm{C}$	3 years
	In solvent	$-80^{\circ} \mathrm{C}$
	2 2 years	6 months
	$-20^{\circ} \mathrm{C}$	1 month

BIOLOGICAL ACTIVITY

Description Molnupiravir- d_{7} is the deuterium labeled Molnupiravir. Molnupiravir (EIDD-2801) is an orally bioavailable prodrug of the ribonucleoside analog EIDD-1931. Molnupiravir has broad spectrum antiviral activity against influenza virus and multiple coronaviruses, such as SARS-CoV-2, MERS-CoV, SARS-CoV. Molnupiravir has the potential for the research of COVID-19, and seasonal and pandemic influenza[1][2].

In Vitro
Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ${ }^{[3]}$.
MCE has not independently confirmed the accuracy of these methods. They are for reference only.

[^0]Caution: Product has not been fully validated for medical applications. For research use only.
Tel: 609-228-6898 Fax: 609-228-5909 E-mail:tech@MedChemExpress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

[^0]: REFERENCES
 [1]. Sheahan TP, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med. 2020 Apr 6. pii: eabb5883.
 [2]. Toots M, et al. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci Transl Med. 2019 Oct 23;11(515). pii: eaax5866.
 [3]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216

