Proteins

Product Data Sheet

Lixumistat hydrochloride

Cat. No.: HY-136093 CAS No.: 1422365-52-3 Molecular Formula: C,3H,7ClF3N5O

Molecular Weight: 351.76

Target: AMPK; Oxidative Phosphorylation Pathway: Epigenetics; PI3K/Akt/mTOR

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

BIOLOGICAL ACTIVITY

Description Lixumistat (HL271) hydrochloride (IM156 hydrochloride; HL156A hydrochloride), a chemical derivative of Metformin (HY-B0627), is a potent AMPK activator that increases AMPK phosphorylation. Lixumistat hydrochloride attenuates aging-

associated cognitive impairment in animal $model^{[1][2]}$. Lixumistat hydrochloride is a potent oxidative phosphorylation

(OXPHOS) inhibitor which can be used for the research of solid tumors^[3].

 $AMPK^{[1][2]}$, $OXPHOS^{[3]}$ IC₅₀ & Target

In Vitro Lixumistat hydrochloride (0.31-10 μM) phosphorylates AMPKα1 Thr172 in a dose- and time-dependent manner in NIH3T3 mouse fibroblast cells^[1].

> Lixumistat hydrochloride does not affect the expression of key factors involved in glucose homeostasis such as glucose-6phosphatase (G6pase) or phosphoenolpyruvate carboxykinase 1 (Pck1) $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[1]

Cell Line:	NIH3T3 cells
Concentration:	0.31 μΜ, 0.62 μΜ, 1.25 μΜ, 2.5 μΜ, 5 μΜ, 10 μΜ
Incubation Time:	4 hours
Result:	Significantly increased the AMPK phosphorylation rate.

In Vivo Lixumistat (hydrochloride) does not affect metabolic regulation assessed by body weight, blood glucose, insulin levels and lipid metabolite content in mice with diet-induced obesity^[1].

> Lixumistat (hydrochloride) (50 mg/kg; for 2 months) does not affect body weight, general locomotion, or anxiety^[2]. Lixumistat (hydrochloride) significantly attenuates the aging-induced decline in novel object recognition memory and spatial working memory^[2].

Lixumistat (hydrochloride) significantly increases AMPK activation in the hippocampus of aged mice^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model: C57BL/6J mice (young group/12-16 weeks, old groups/20-22 months)^[2]

Dosage:	50 mg/kg
Administration:	Oral administration (in drinking water), for 2 months
Result:	Attenuated age-related cognitive decline.

REFERENCES

- [1]. Row H, et al. HL271, a novel chemical compound derived from metformin, differs from metformin in its effects on the circadian clock and metabolism. Biochem Biophys Res Commun. 2016 Jan 15;469(3):783-9.
- [2]. Bang E, et al. The Improving Effect of HL271, a Chemical Derivative of Metformin, a Popular Drug for Type II Diabetes Mellitus, on Aging-induced Cognitive Decline. Exp Neurobiol. 2018 Feb;27(1):45-56.
- [3]. Sun Young Rha, et al. Phase I study of IM156, a novel potent biguanide oxidative phosphorylation (OXPHOS) inhibitor, in patients with advanced solid tumors. Journal of Clinical Oncology 38(15_suppl):3590-3590.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ {\tt MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA