Proteins

Product Data Sheet

PSB 0777 ammonium hydrate

Cat. No.: HY-136233A

Molecular Formula: $C_{18}H_{20}N_5O_7S_2.NH_4.1.75H_2O$

Molecular Weight: 532.09

Target: Adenosine Receptor Pathway: GPCR/G Protein

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

BIOLOGICAL ACTIVITY

Description	PSB 0777 ammonium hydrate is a potent and selective adenosine A_{2A} receptor full agonist with K_i values of 44.4 nM, 360 nM for rat and human A_{2A} receptors, respectively. PSB 0777 ammonium hydrate has K_i values of \geq 10000 nM, 541 nM for rat and human A_1 receptors, respectively. PSB 0777 ammonium hydrate shows poor brain penetrant and perorally non-absorbable effect. PSB 0777 ammonium hydrate has the potential for inflammatory bowel disease (IBS) research research $^{[1][2][3]}$.
IC ₅₀ & Target	Ki: 44.4 nM (rat A_{2A}), 360 nM (human A_{2A}), ≥10000 nM (rat A_1) and 541 nM (human A_1) ^[1]
In Vitro	PSB 0777 ammonium hydrate (compound 7) shows high selectivity for the $A_{2A}AR$ (>225-fold) versus the other AR subtypes (K_i values of >10000 nM and \boxtimes 10000 for human A_{2B} receptor and A_3 receptor, respectively). PSB 0777 ammonium hydrate acts as an full agonist at $A_{2A}AR$ with an EC $_{50}$ value of 117 nM in CHO-K1 cells ^[1] . PSB-0777 ammonium binds human β 1 (K_i =4.4 μ M) and β 3 (K_i =3.3 μ M) adrenergic receptors ^[2] . PSB 0777 ammonium hydrate (0.1 μ M, 1 μ M, 10 μ M) increases concentration-dependently Acetylcholine (Ach, 1 mM) contractions in untreated and inflamed rat ileum/jejunum preparations in ex vivo experiments ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	PSB 0777 ammonium hydrate (0.4 mg/kg/day; oral gavage; from the day 5 to 10) causes a marked reduction of inflammatory cell infiltration and an amelioration of colonic mucosal architecture ^[3] . PSB 0777 ammonium hydrate (0.03, 0.3, 3 mg/kg; i.p.) causes dose-dependent hypothermia and hypoactivity in C57BL/6J mice ^[2] . PSB 0777 ammonium hydrate cannot be absorbed systemically by the digestive mucosa once administered by the oral route. PSB 0777 ammonium hydrate (0.4 mg/kg/day; PO) has very low plasma concentrations in rats at 30 min (below 5 nM), and there is no plasma concentrations at 60 min after administration. PSB 0777 ammonium hydrate (0.4 mg/kg/day; IP) makes plasma concentrations well evident at 30 min, and decreases after 60 min, and is not detectable at 120 and 240 min ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Ali El-Tayeb, et al. Development of Polar Adenosine A2A Receptor Agonists for Inflammatory Bowel Disease: Synergism with A2B Antagonists. ACS Med Chem Lett. 2011 Oct 10;2(12):890-5.

[2]. Jesse Lea Carlin, et al. Activation of adenosine A 2A or A 2B receptors causes hypothermia in mice. Neuropharmacology. 2018 Sep 1;139:268-278.

[3]. L Antonioli, et al. Anti-inflam Mar;14(1):27-36.	nmatory effect of a novel local	ly acting A 2A receptor agonist in	a rat model of oxazolone-induced c	olitis. Purinergic Signal. 2018
			ical applications. For research u	
	Tel: 609-228-6898 Address: 1 D	Fax: 609-228-5909 eer Park Dr, Suite Q, Monmou	E-mail: tech@MedChemExpro th Junction, NJ 08852, USA	ess.com

Page 2 of 2 www.MedChemExpress.com