Oleandrin inhibits the Na\(^+\), K\(^+\)-ATPase activity with an IC\(_{50}\) of 620 nM. Oleandrin induces apoptosis via activating endoplasmic reticulum stress.

IC\(_{50}\) & Target

IC\(_{50}\): 620 nM (Na\(^+\), K\(^+\)-ATPase)\(^1\).

In Vitro

Study of Na,K-ATPase inhibition shows an IC\(_{50}\) (nM) of 620 for Oleandrin. The inhibition of Na,K-ATPase by Oleandrin confirms that it likely exert its toxic effect through inhibition of sodium pump activity\(^1\). When treated with a series of concentrations of Oleandrin (0.2-25 nM), the undifferentiated CaCO-2 cells are sensitive as evidenced by an IC\(_{50}\) of 8.25 nM. In contrast, a maximum growth inhibition of only 20% is reached in differentiated CaCO-2 cells even though they are treated with Oleandrin concentrations as high as 25 nM\(^2\).

In Vivo

The effect of Oleandrin is investigated on glioma growth in vivo. To this aim, SCID or C57BL/6 mice are transplanted, respectively, with human U87MG (5×10\(^4\)), U251, GBM19 (5×10\(^5\)), or murine (syngeneic) GL261 (7.5×10\(^4\)) cells into the right striatum and, after 10 d, treated daily with intraperitoneal Oleandrin for an additional 7 d. Oleandrin significantly reduces tumor sizes in human and murine glioma cell models in vivo in a dose-dependent way. High concentrations of Oleandrin (3 mg/kg) are fatal in both models, as expected from the known lethal dose for rodents. Doses of Oleandrin below the lethal dose (0.3 mg/kg) significantly increase the survival time from 32.6±1.4 d to 53.8±9.6 d in mice injected with U87MG cells (n=5-11; p<0.01, log-rank test) and from 23.37±1.2 d to 34.38±3.3 d (n=5-11; p<0.01, log rank test) in mice injected with GL261 cells\(^3\).

PROTOCOL

Cell Assay\(^2\)

Undifferentiated wild-type and well-differentiated CaCO-2 cells are treated with a range of concentrations of Oleandrin (0.2-25 nM). After 48 h, cells are labeled with BrdU and relative cell proliferation is determined with a BrdU Cell Proliferation Kit\(^2\).

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal

Mice\(^3\)
After tumor cell injection, SCID or C57BL/6 mice are monitored daily. The end point is determined by lack of physical activity or death. The mean survival time is calculated using the Kaplan-Meier method and statistical analysis is performed using a log-rank test. For cotreatment with Temozolomide (TMZ), 10 d after tumor injection, mice are treated with Oleandrin (0.03, 0.3, or 3 mg/kg/daily, i.p.), TMZ (50 mg/kg, i.p., every 2 d for a total of 4 times with a stop of 2 weeks) or both. The dosing scheme is chosen starting from these data to be reasonably sure that a constant concentration of drug is maintained along the experiment. Animals used in Kaplan-Meier survival studies receive up to four TMZ cycles.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

See more customer validations on www.MedChemExpress.com

REFERENCES

