Product Data Sheet

MIPS521

Cat. No.: HY-139644 CAS No.: 1146188-19-3 Molecular Formula: C₁₉H₁₀ClF₆NOS

Molecular Weight: 449.8

Target: Adenosine Receptor Pathway: GPCR/G Protein

Storage: Powder -20°C 3 years

2 years

In solvent -80°C 6 months

antinociception^[2].

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (55.58 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2232 mL	11.1161 mL	22.2321 mL
	5 mM	0.4446 mL	2.2232 mL	4.4464 mL
	10 mM	0.2223 mL	1.1116 mL	2.2232 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description $\label{eq:mipss21} \ \text{MIPS521} \ \text{is a positive allosteric modulator of adenosine A}_1 \ \text{receptor (A}_1 \ \text{AR)}. \ \text{MIPS521} \ \text{also has a lower A}_1 \ \text{R allosteric affinity allosteric modulator of adenosine A}_2 \ \text{R allosteric affinity allosteric affinity allosteric affinity allosteric modulator of adenosine A}_2 \ \text{R allosteric affinity allosteric modulator of adenosine A}_2 \ \text{R allosteric affinity allosteric modulator of adenosine A}_3 \ \text{R allosteric affinity allosteric modulator of adenosine A}_3 \ \text{R allosteric affinity allosteric modulator of adenosine A}_3 \ \text{R allosteric affinity allosteric modulator of adenosine A}_3 \ \text{R allosteric affinity allosteric modulator of adenosine A}_3 \ \text{R allosteric affinity allosteric modulator of adenosine A}_3 \ \text{R allosteric modulator of adenosine A}_4 \$ $(pK_B=4.95;K_B=11~\mu\text{M}).~MIPS521~exhibits~pain-relieving~effects~in~vivo~through~modulation~of~the~increased~levels~of~effects~in~vivo~through~modulation~of~the~increased~levels~of~effects~in~vivo~through~modulation~of~the~increased~levels~of~effects~in~vivo~through~modulation~of~the~increased~levels~of~effects~in~vivo~through~modulation~of~the~increased~levels~of~effects~of~effects~in~vivo~through~modulation~of~the~increased~levels~of~effects~$

endogenous adenosine^{[1][2]}. IC₅₀ & Target A_1AR MIPS521 (compound 13o) (3-10 μ M) improves the ability of R-PIA to promote A₁AR-mediated ERK1/2 phosphorylation^[1]. In Vitro MIPS521 (0.3-30 µM; pretreament for 10 min, co-treatment for 30 min) produces a concentration-dependent potentiation of signalling by ADO in an inhibition of cAMP assay (expressed as a percentage of the inhibition of 3 μM forskolin-mediated cAMP) in CHO cells^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. In Vivo MIPS521 (1-30 μg in 10 μL; intrathecal administration) reverses mechanical hyperalgesia in rats, promoting robust

MIPS521 (10 μg in 10 μL ; intrathecal administration) significantly reduces spontaneous pain in a conditioned place

Page 1 of 2

 $preference\ model^{[2]}.$

MIPS521 (1-30 μ g in 10 μ L; intrathecal administration) reduces eEPSCs in spinal cord from nerve-injured rats, with a pEC₅₀ of 6.9. The maximum MIPS521-induced decrease in synaptic current amplitude is significantly greater in nerve-injured rats than in sham surgery controls^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male and female Sprague-Dawley rats (7-12 weeks) were performed a partial nerve ligation (PNL) or sham surgery $^{[2]}$	
Dosage:	1, 3, 10, 30 μg in 10 μL	
Administration:	Intrathecal administration	
Result:	Reduced eEPSCs in spinal cord from nerve-injured rats and reversed mechanical hyperalgesia.	

REFERENCES

[1]. Aurelio L, et, al. Allosteric modulators of the adenosine A1 receptor: synthesis and pharmacological evaluation of 4-substituted 2-amino-3-benzoylthiophenes. J Med Chem. 2009 Jul 23;52(14):4543-7.

[2]. Draper-Joyce CJ, et, al. Positive allosteric mechanisms of adenosine A 1 receptor-mediated analgesia. Nature. 2021 Sep;597(7877):571-576.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA