2-Deoxy-D-glucose

Cat. No.: HY-13966
CAS No.: 154-17-6
Molecular Formula: C₆H₁₂O₅
Molecular Weight: 164.16
Target: Hexokinase
Pathway: Metabolic Enzyme/Protease
Storage: 4°C, protect from light

Solvent & Solubility

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Mass (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>≥ 51 mg/mL (310.67 mM)</td>
</tr>
<tr>
<td>H₂O</td>
<td>≥ 24 mg/mL (146.20 mM)</td>
</tr>
</tbody>
</table>

* “≥” means soluble, but saturation unknown.

Preparing Stock Solutions

<table>
<thead>
<tr>
<th>Concentration</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td>6.0916 mL</td>
<td>30.4581 mL</td>
<td>60.9162 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td>1.2183 mL</td>
<td>6.0916 mL</td>
<td>12.1832 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td>0.6092 mL</td>
<td>3.0458 mL</td>
<td>6.0916 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description
2-Deoxy-D-glucose is a glucose analog that acts as a competitive inhibitor of glucose metabolism, inhibiting glycolysis via its actions on hexokinase.

In Vitro
2-Deoxy-D-glucose (2-DG, 4, 8, or 16 mM) significantly reduces the level of ATP in MCF-7 cells in a dose- and time-dependent manner that parallels the effects of 2-DG on cell growth. The levels of phosphorylated Akt are significantly decreased, whereas the levels of phosphorylated AMPK and Sirt-1 are significantly increased in MCF-7 cells exposed to 2-Deoxy-D-glucose at 4, 8, or 16 mM for 1, 3, or 5 days in a dose- and time-dependent manner[1]. 2-DG treatment increases the levels of pentose phosphate pathway (PPP) metabolites and augments the generation of NADPH by glucose-6-phosphate dehydrogenase. An increase in NADPH and upregulation of glutathione synthetase expression resultes in the increase in the reduced form of glutathione by 2-DG in NB4 cells[3].

In Vivo
2-Deoxy-D-glucose (0.03%, w/w) causes a 7% decrease in final weight that is statistically significant, and delays the appearance of palpable mammary carcinomas[1]. 2-Deoxy-D-glucose (3 mmol/kg, i.v.) is decreased in a dose-dependent manner by insulin in rat muscle[2].
PROTOCOL

Cell Assay [1]

The effect of 2-DG on cell growth is determined by evaluating the number of adherent cells. Briefly, MCF-7 cells are plated at 3×10^4 cells per well in flat-bottomed 96-well plates in 100 μL of culture medium under the culture conditions. After 24 hours, cells are fed with fresh medium including 2-Deoxy-D-glucose at doses of 0, 4, 8, or 16 mM. At days 1, 3, and 5 after 2-Deoxy-D-glucose exposure, cells are fixed with 1% glutaraldehyde, replaced with PBS, and stored at 4°C. At the end of an experiment, all of the plates are stained with 0.02% aqueous crystal violet for 30 minutes and rinsed with deionized water. After redissolving the bound crystal violet in 70% ethanol, the absorbance is determined at 590 nm using a SPECTRA MAX PLUS Microplate Spectrophotometer System.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [1]

At 21 days of age, rats are injected with 50 mg 1-methyl-1-nitrosourea per kilogram of body weight (i.p.). Rats are housed two per cage in solid-bottomed polycarbonate cages equipped with a food cup. Six days following carcinogen injection, all rats are randomized into one of three groups, 30 rats per group, and are fed ad libitum AIN-93G diet containing 0.0%, 0.02%, or 0.03% (w/w) 2-Deoxy-D-glucose (2-DG) for 5 weeks. Animal rooms are maintained at 22±1°C with 50% relative humidity and a 12-hour light/12-hour dark cycle. Rats are weighed thrice per week and are palpated for detection of mammary tumors twice per week starting from 19 days postcarcinogen.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

See more customer validations on www.MedChemExpress.com

REFERENCES

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA