Proteins

Product Data Sheet

endo-BCN-PEG4-NHS ester

Cat. No.: HY-140069 CAS No.: 2252422-32-3 Molecular Formula: $C_{26}H_{38}N_2O_{10}$ Molecular Weight: 538.59

Target: **PROTAC Linkers**

Pathway: PROTAC

Storage: Pure form -20°C 3 years

> In solvent -80°C 6 months

> > -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (464.17 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.8567 mL	9.2835 mL	18.5670 mL
	5 mM	0.3713 mL	1.8567 mL	3.7134 mL
	10 mM	0.1857 mL	0.9283 mL	1.8567 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	endo-BCN-PEG4-NHS ester is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs ^[1] . endo-BCN-PEG4-NHS ester is a click chemistry reagent, it contains a BCN group that can undergo strain-promoted alkyne-azide cycloaddition (SPAAC) with molecules containing Azide groups.
IC ₅₀ & Target	PEGs
In Vitro	PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com