N-(Azido-PEG3)-N-Boc-PEG4-Boc

Cat. No.:	HY-140565		
CAS No.:	2112731-94-7		
Molecular Formula:	C ₂₈ H ₅₄ N ₄ O ₁₁		
Molecular Weight:	622.75		
Target:	PROTAC Linkers		
Pathway:	PROTAC		
Storage:	Pure form	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	6 months
		-20°C	1 month

BIOLOGICAL ACTIVITY

Description	N-(Azido-PEG3)-N-Boc-PEG4-Boc is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs ^[1] . N-(Azido- PEG3)-N-Boc-PEG4-Boc is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide- alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. Strain-promoted alkyne-azide cycloaddition (SPAAC) can also occur with molecules containing DBCO or BCN groups.		
IC ₅₀ & Target	PEGs	Alkyl/ether	
In Vitro	PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		

REFERENCES

[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Product Data Sheet

