Azido-PEG2-alcohol

Cat. No.:	HY-140797			
CAS No.:	139115-90-5			
Molecular Formula:	$C_4H_9N_3O_2$			
Molecular Weight:	131.13			
Target:	PROTAC Lir	nkers		
Pathway:	PROTAC			
Storage:	Pure form	-20°C	3 years	
		4°C	2 years	
	In solvent	-80°C	6 months	
		-20°C	1 month	

SOLVENT & SOLUBILITY

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	7.6260 mL	38.1301 mL	76.2602 mL
Stock Solutions	5 mM	1.5252 mL	7.6260 mL	15.2520 mL
	10 mM	0.7626 mL	3.8130 mL	7.6260 mL

Description	Azido-PEG2-alcohol is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs ^[1] . Azido-PEG2-alcohol is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. Strain-promoted alkyne-azide cycloaddition (SPAAC) can also occur with molecules containing DBCO or BCN groups.			
IC ₅₀ & Target	PEGs			
In Vitro	PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			

REFERENCES

[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA