Proteins

Product Data Sheet

Biotin-PEG4-Amide-C6-Azide

Cat. No.: HY-140914

CAS No.: 1006592-62-6Molecular Formula: $C_{27}H_{49}N_7O_7S$ Molecular Weight: 615.79

Target: PROTAC Linkers

Pathway: PROTAC

Storage: -20°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

SOLVENT & SOLUBILITY

		٠.	
In	W	ΠŤ	ro

DMSO: 100 mg/mL (162.39 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.6239 mL	8.1197 mL	16.2393 mL
	5 mM	0.3248 mL	1.6239 mL	3.2479 mL
	10 mM	0.1624 mL	0.8120 mL	1.6239 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.06 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (4.06 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.06 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Biotin-PEG4-Amide-C6-Azide is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs ^[1] . Biotin-PEG4-Amide-C6-Azide is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. Strain-promoted alkyne-azide cycloaddition (SPAAC) can also occur with molecules containing DBCO or BCN groups.
IC ₅₀ & Target	PEGs
In Vitro	PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for

the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com