MedChemExpress

CDK6/PIM1-IN-1

Cat. No.:	$\mathrm{HY}-142696$
CAS No.:	$2677026-14-9$
Molecular Formula:	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{FN}_{9}$
Molecular Weight:	473.55
Target:	$\mathrm{CDK} ;$ Pim; Apoptosis
Pathway:	Cell Cycle/DNA Damage; JAK/STAT Signaling; Apoptosis
Storage:	Please store the product under the recommended conditions in the Certificate of
	Analysis.

BIOLOGICAL ACTIVITY

Description

IC_{50} \& Target

In Vitro

CDK6/PIM1-IN-1 is a potent and balanced dual CDK6/PIM1 inhibitor with IC 50 values of 39 and 88 nM , respectively. CDK6/PIM1-IN-1 inhibits CDK4 (IC50=3.6 nM). CDK6/PIM1-IN-1 significantly inhibits acute myeloid leukemia (AML) cell proliferation, arrest cell cycle at the G1 phase, and promote cell apoptosis. CDK6/PIM1-IN-1 exhibits potent antiAML activity ${ }^{[1]}$.

CDK6/cyclinD1 39 nM (IC50)	$\begin{aligned} & \text { CDK1/cyclinB } \\ & >10 \mu \mathrm{M}\left(\mathrm{IC}_{50}\right) \end{aligned}$	CDK2/cyclinA $2.274 \mu \mathrm{M}\left(\mathrm{IC}_{50}\right)$	CDK3/Cyclin E $>10 \mu \mathrm{M}\left(\mathrm{IC}_{50}\right)$
Cdk4/cyclin D1	Cdk5/p25	CDK7/Cyclin H/MNAT1	CDK9/cyclinT1
$3.6 \mathrm{nM}\left(\mathrm{IC}_{50}\right)$	$>10 \mu \mathrm{M}\left(\mathrm{IC}_{50}\right)$	393 nM (IC_{50})	$440 \mathrm{nM}\left(\mathrm{IC}_{50}\right)$
CDK12/Cyclin K	CDK13/Cyclin K	PIM1	PIM2
$>10 \mu \mathrm{M}\left(\mathrm{IC}_{50}\right)$	$>10 \mu \mathrm{M}\left(\mathrm{IC}_{50}\right)$	$88 \mathrm{nM}\left(\mathrm{IC}_{50}\right)$	$>10 \mu \mathrm{M}\left(\mathrm{IC}_{50}\right)$
PIM3			
$92 \mathrm{nM}\left(\mathrm{IC}_{50}\right)$			

CDK6/PIM1-IN-1 (compound 51) exhibits more than 10 times selectivity over CDK1 (IC $50>10 \mu \mathrm{M})$, CDK2 (IC $50=2.274 \mu \mathrm{M})$, CDK3 $\left(I C_{50}>10 \mu \mathrm{M}\right)$, CDK5 $\left(I C_{50}>10 \mu \mathrm{M}\right)$, CDK7 $\left(\mathrm{IC}_{50}=393 \mathrm{nM}\right)$, CDK9 $\left(I C_{50}=440 \mathrm{nM}\right)$, CDK12 $\left(I C_{50}>10 \mu \mathrm{M}\right)$, and CDK13 (IC $\left.50>10 \mu \mathrm{M}\right)$. CDK6/PIM1-IN-1 shows inhibitory activity against PIM2 (IC $\left.5_{50}>10 \mu \mathrm{M}\right)$ and PIM3 (IC $\left.{ }_{50}=92 \mathrm{nM}\right)^{[1]}$.
CDK6/PIM1-IN-1 inhibits proliferation in AML cells (K562 cell, $\mathrm{GI}_{50}=1.026 \mu \mathrm{M} ; \mathrm{HL}-60$ cell, $\mathrm{GI}_{50}=1.069 \mu \mathrm{M} ; \mathrm{MOLM} 13$ cell, GI_{50} $=1.362 \mu \mathrm{M})^{[1]}$.
CDK6/PIM1-IN-1 ($0.5,1,1.5 \mu \mathrm{M}$) causes a G1 arrest in a dose-dependent manner in K562 and HL-60 cell lines ${ }^{[1]}$.
CDK6/PIM1-IN-1 (1, 2, $4 \mu \mathrm{M})$ promotes the apoptosis of K 562 and $\mathrm{HL}-60$ cell lines in a dose-dependent manner ${ }^{[1]}$.
CDK6/PIM1-IN-1 ($0.5,1,1.5 \mu \mathrm{M}$; for 24 h) reduces p-retinoblastoma (RB) and p-BAD levels in a concentration-dependent manner. CDK6/PIM1-IN-1 decreases the PIM1 level ${ }^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

CDK6/PIM1-IN-1 (compound 51; orally; $60,90 \mathrm{mg} / \mathrm{kg} /$ day; 17 days) displays more potent antitumor activity in BALB/c mice with K562 cell lines ${ }^{[1]}$.
CDK6/PIM1-IN-1 (iv; $5 \mathrm{mg} / \mathrm{kg}$) has the $\mathrm{t}_{1 / 2}, \mathrm{MRT}_{0-\infty}$, and $\mathrm{AUC}_{0-\infty}$ values of $9.78 \mathrm{~h}, 14.61 \mathrm{~h}$, and $1153.74 \mathrm{~h} \cdot \mathrm{ng} / \mathrm{mL}$, respectively in Sprague-Dawley (SD) rats ${ }^{[1]}$.
CDK6/PIM1-IN-1 (po; $5 \mathrm{mg} / \mathrm{kg}$) has the $\mathrm{t}_{1 / 2}, \mathrm{~T}_{\text {max }}, \mathrm{C}_{\text {max }}$, and $\mathrm{AUC}_{0-\infty}$ of $15.81 \mathrm{~h}, 11 \mathrm{~h}, 152.31 \mathrm{ng} / \mathrm{mL}$, and $5152.92 \mathrm{~h} \cdot \mathrm{ng} / \mathrm{mL}$,
respectively in SD rats ${ }^{[1]}$.
MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Kai Yuan, et al. Discovery of Dual CDK6/PIM1 Inhibitors with a Novel Structure, High Potency, and Favorable Druggability for the Treatment of Acute Myeloid Leukemia. J Med Chem. 2022 Jan 13;65(1):857-875.

Caution: Product has not been fully validated for medical applications. For research use only.

[^0]
[^0]: Tel: 609-228-6898 Fax: 609-228-5909 E-mail:tech@MedChemExpress.com
 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

