Tetrahydrofolic acid trihydrochloride

Cat. No.: HY-14520B CAS No.: 150731-85-4 Molecular Formula: $C_{19}H_{26}Cl_3N_7O_6$

Molecular Weight: 554.81

Target: **Endogenous Metabolite** Pathway: Metabolic Enzyme/Protease

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY

Description Tetrahydrofolic acid (L-5,6,7,8-Tetrahydrofolic acid) trihydrochloride is the biologically active vitamin B9 folate derivative.

Tetrahydrofolic acid trihydrochloride is a donor of one-carbon groups for amino acids, nucleic acids, and lipids.

Tetrahydrofolic acid trihydrochloride serves as an acceptor of free formaldehyde, producing 5,10-

methylenetetrahydrofolate-Tetrahydrofolic acid^[1].

IC₅₀ & Target Human Endogenous Metabolite

In Vitro

Tetrahydrofolic acid (0-200 μM; 3 days; Adh5-/- DT40 cells) trihydrochloride exposure is cytotoxic to Adh5- and Fanconi anemia (FA)-deficient cells due to the accumulation of extensive DNA damage and chromosome breaks^[1].

Tetrahydrofolic acid (0-100 µM; 16 hours; Adh5-/- DT40 cells) trihydrochloride strongly promots FANCD2 and ser139-H2AX focus formation in Adh5^{-/-} cells in a dose-dependent manner^[1].

Tetrahydrofolic acid trihydrochloride exposure activates the DNA damage response (DDR) due to uncontrolled activity of the thymidylate synthase enzyme, which causes a depletion of essential nucleotides, and promotes repair by a homologous recombination mechanism^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line:	Adh5 ^{-/-} DT40 cells
Concentration:	0-200 μΜ
Incubation Time:	3 days
Result:	Viability of Adh5 ^{-/-} DT40 cells rapidly dropped.

Western Blot Analysis^[1]

Cell Line:	Adh5 ^{-/-} DT40 cells
Concentration:	0-200 μΜ
Incubation Time:	16 hours
Result:	Strongly promoted FANCD2 and ser139-H2AX focus formation in Adh5 ^{-/-} cells in a dose-dependent manner.

In Vivo

Tetrahydrofolic acid (62.5 mg/kg; intraperitoneal injection; daily; Adh5^{-/-} mice) trihydrochloride perturbs the hematopoiesis of hematopoietic cells, increases ser139-H2AX phosphorylation, and decreases the survival of progenitor cells (HSPCs) suggesting that excess Tetrahydrofolic acid trihydrochloride could be mutagenic and genotoxic to bone marrow cells^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Adh5 ^{-/-} mice ^[1]
Dosage:	62.5 mg/kg
Administration:	Intraperitoneal injection; daily
Result:	Perturbed hematopoiesis, increased ser139-H2AX phosphorylation, and decreased the survival of progenitor cells (HSPCs).

CUSTOMER VALIDATION

• J Biol Chem. 2022 Sep 28;102548.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Steven W. Bailey, et al. Synthesis of Tetrahydropteridine C6-Stereoisomers, Including N6-Formyl-(68)-tetrahydrofolic Acid. The Journal of Organic Chemistry, 57(16), 4470-4477.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA