Proteins

Product Data Sheet

Ziprasidone mesylate

Cat. No.: HY-14542C CAS No.: 185021-64-1 Molecular Formula: $C_{22}H_{25}CIN_4O_4S_2$

Molecular Weight: 509.04

Target: 5-HT Receptor; Dopamine Receptor Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Ziprasidone (CP-88059) mesylate is an orally active combined 5-HT and dopamine receptor antagonist^[1]. Ziprasidone Description mesylate has affinities for Rat D₂ (K_i =4.8 nM), 5-HT_{2A} (K_i =0.42 nM) and 5-HT_{1A} (K_i =3.4 nM)^[1].

IC₅₀ & Target Rat 5-HT₂ Receptor Rat 5-HT_{1A} Receptor Rat D₂ Receptor 0.42 nM (Ki) 3.4 nM (Ki) 4.8 nM (Ki)

Ziprasidone mesylate (0-500 nM, 150 seconds) blocks wild-type hERG current^[2]. In Vitro

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[2]

Cell Line:	HEK-293 cells
Concentration:	0-500 nM
Incubation Time:	150 seconds
Result:	Blocked wild-type hERG current in a voltage- and concentration-dependent manner (IC $_{50}$ = 120 nm).

In Vivo

Ziprasidone mesylate (oral gavage; 20 mg/kg; once daily; 7 weeks) results in weight loss, low level physical activity, high resting energy expenditure and greater capacity for thermogenesis when subjected to cold^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Eight-week-old female Sprague-Dawley rats weighing 200 to 250 g ^[3]
Dosage:	20 mg/kg
Administration:	Oral gavage; 20 mg/kg; once daily; 7 weeks
Result:	Gained significantly less weight (P = 0.031), had a lower level of physical activity (P = 0.016), showed a higher resting energy expenditure (P < 0.001), and displayed a greater capacity for thermogenesis when subjected to cold (P < 0.001).

CUSTOMER VALIDATION

• Research Square Preprint. 2021 Jul.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. H Rollema, et al. 5-HT(1A) receptor activation contributes to ziprasidone-induced dopamine release in the rat prefrontal cortex. Biol Psychiatry. 2000 Aug 1;48(3):229-37.
- [2]. Zhi Su, et al. Block of hERG channel by ziprasidone: biophysical properties and molecular determinants. Biochem Pharmacol. 2006 Jan 12;71(3):278-86.
- [3]. Subin Park, et al. The effect of ziprasidone on body weight and energy expenditure in female rats. Metabolism. 2012 Jun;61(6):787-93.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA