

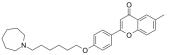
Product Data Sheet

AChE-IN-14

 Cat. No.:
 HY-146035

 CAS No.:
 2390042-05-2

 Molecular Formula:
 C₂₈H₃₅NO₃


Molecular Weight: 433.58

Target: Cholinesterase (ChE); Histamine Receptor

Pathway: Neuronal Signaling; GPCR/G Protein; Immunology/Inflammation

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description	AChE-IN-14 (compound 5) is a potent cholinesterase inhibitor with IC $_{50}$ s of 0.46, 0.48, and 0.44 μ M for electric eel acetylcholinesterase (eeAChE), human recombinant acetylcholinesterase (hAChE), and equine serum butyrylcholinesterase (eqBuChE), respectively. AChE-IN-14 exhibits high affinity toward human H $_3$ receptor (H $_3$ R; K $_i$ = 159.8 nM). AChE-IN-14 can be used for the research of Alzheimer's disease ^[1] .
In Vitro	AChE-IN-14 (compound 5) has a good affinity to human H_3 receptor with a K_i value of 159.8 nM in HEK293 cells ^[1] . AChE-IN-14 has a high orally activity and cannot cross the blood-brain barrier ^[1] . AChE-IN-14 (10 μ M, 5 min) inhibits hAChE with an IC ₅₀ value of 0.48 μ M and represents the non-competitive type of eeAChE (K_i = 176 nM) and eqBuChE (K_i = 281 nM) inhibition ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Marek Bajda, et al. Search for new multi-target compounds against Alzheimer's disease among histamine H₃ receptor ligands. Eur J Med Chem. 2020 Jan 1;185:111785.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Inhibitors