L-Glutamic acid- ${ }^{15} \mathrm{~N}, \mathrm{~d}_{5}$

Cat. No.:	$\mathrm{HY}-14608 \mathrm{S9}$
Molecular Formula:	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{D}_{5}{ }^{15} \mathrm{NO}_{4}$
Molecular Weight:	153.15
Target:	Apoptosis; iGluR; Ferroptosis; Endogenous Metabolite; Isotope-Labeled Compounds
Pathway:	Apoptosis; Membrane Transporter/lon Channel; Neuronal Signaling; Metabolic
Storage:	Enzyme/Protease; Others
	Alease store the product under the recommended conditions in the Certificate of

BIOLOGICAL ACTIVITY

Description

In Vitro
L-Glutamic acid- ${ }^{15} \mathrm{~N}, \mathrm{~d}_{5}$ is the deuterium and ${ }^{15} \mathrm{~N}$-labeled L-Glutamic acid. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ${ }^{[1]}$.
MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

Caution: Product has not been fully validated for medical applications. For research use only.
Tel: 609-228-6898 Fax: 609-228-5909 E-mail:tech@MedChemExpress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

