)

MedChemExpress

IDO/Tubulin-IN-2

Cat. No.:	$\mathrm{HY}-146715$
CAS No.:	$2409479-24-7$
Molecular Formula:	$\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{10}$
Molecular Weight:	860.87
Target:	Microtubule/Tubulin; Apoptosis
Pathway:	Cell Cycle/DNA Damage; Cytoskeleton; Apoptosis
Storage:	Please store the product under the recommended conditions in the Certificate of
	Analysis.

BIOLOGICAL ACTIVITY

Description

IC_{50} \& Target

In Vitro

IDO/Tubulin-IN-2 (HT2) is a potent TDO and tubulin inhibitor. IDO/Tubulin-IN-2 also shows potent activity against U87, HepG2, A549, HCT-116, and LO2 cancer cell lines, with IC_{50} values of $0.43,0.036,0.041,0.095$ and $1.04 \mu \mathrm{M}$, respectively. IDO/Tubulin-IN-2 remarkably promotes the antitumor activity ${ }^{[1]}$.

TDO, Tubulin ${ }^{[1]}$

IDO/Tubulin-IN-2 (HT2) (0-50 $\mu \mathrm{M}, 4 \mathrm{~h})$ shows potent cytotoxicity with IC_{50} values between 0.036 and $0.43 \mu \mathrm{M}$ against cancer cell lines ${ }^{[1]}$.
IDO/Tubulin-IN-2 ($0.1 \mu \mathrm{M}, 24 \mathrm{~h})$ arrests the HepG2 cells cycle mainly at the G2 phase ${ }^{[1]}$.
IDO/Tubulin-IN-2 ($0.1 \mu \mathrm{M}, 24 \mathrm{~h}$) can effectively cause cell apoptosis ${ }^{[1]}$.
IDO/Tubulin-IN-2 ($0.1 \mu \mathrm{M}, 24 \mathrm{~h})$ has strongly effects on inducing the proteolytic cleavage of PARP and up-regulating the expression level of caspase-3 ${ }^{[1]}$.

IDO/Tubulin-IN-2 ($0.05 \mu \mathrm{M}, 24,48$ and 72 h$)$ markedly decreases mRNA expression level of TDO at a time-dependent manner [1].
IDO/Tubulin-IN-2 (2 days) can improve T-cell activation and proliferation and enhance immune response ${ }^{[1]}$.
MCE has not independently confirmed the accuracy of these methods. They are for reference only.
Cell Proliferation Assay

Cell Line:	Human cancer cell lines and non-tumoral cell line ${ }^{[1]}$
Concentration:	$0-50 \mu \mathrm{M}$
Incubation Time:	4 h
Result:	Displayed potent cytotoxicity with IC 50

Cell Cycle Analysis

Cell Line:	HepG2 cells ${ }^{\text {[1] }}$
Concentration:	$0.1 \mu \mathrm{M}$
Incubation Time:	24 h

Result:	Arrested the HepG2 cells cycle mainly at the G2 phase.
Apoptosis Analysis	
Cell Line:	HepG2 cells ${ }^{[1]}$
Concentration:	$0.1 \mu \mathrm{M}$
Incubation Time:	24 h
Result:	Effectively caused cell apoptosis, the percentage of apoptosis cells increased to 54\%
Western Blot Analysis	
Cell Line:	HepG2 cells ${ }^{[1]}$
Concentration:	$0.1 \mu \mathrm{M}$
Incubation Time:	24 h
Result:	Showed strongly effects on inducing the proteolytic cleavage of PARP and up-regulating the expression level of caspase-3, which could lead to cell death at last.
RT-PCR	
Cell Line:	HepG2 cells ${ }^{[1]}$
Concentration:	$0.05 \mu \mathrm{M}$
Incubation Time:	24, 48 and 72 h
Result:	Markedly decreased mRNA expression level of TDO at a time-dependent manner.
IDO/Tubulin-IN-2 (HT2) ($30 \mathrm{mg} / \mathrm{kg}$; IV; daily, for 21 days) significantly inhibits tumor growth ${ }^{[1]}$. IDO/Tubulin-IN-2 ($30 \mathrm{mg} / \mathrm{kg}$; IV; 29 days) has effective antitumor immunity ability to promote the tumor therapeutic efficacy ${ }^{[1]}$.	
Animal Model:	ICR mice (mouse liver cancer xenograft models, established by subcutaneous inoculation of H 22 cells) ${ }^{[1]}$
Dosage:	$30 \mathrm{mg} / \mathrm{kg}$
Administration:	Intravenously injected via a tail vein; daily, for 21 days
Result:	Significantly inhibited tumor growth.
Animal Model:	Male A549 tumor xenograft BALB/c nude mice (5 weeks, 18-22 g) ${ }^{[1]}$
Dosage:	$30 \mathrm{mg} / \mathrm{kg}$
Administration:	IV, daily, for 29 days
Result:	Had effective antitumor immunity ability to promote the tumor therapeutic efficacy.

REFERENCES

[1]. Hua S, Chen F, Gou S. Microtubule inhibitors containing immunostimulatory agents promote cancer immunochemotherapy by inhibiting tubulin polymerization and tryptophan-2,3-dioxygenase. Eur J Med Chem. 2020;187:111949.

Caution: Product has not been fully validated for medical applications. For research use only

[^0]
[^0]: Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com
 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

