Product Data Sheet

PI3K/mTOR Inhibitor-9

Cat. No.: HY-147285 CAS No.: 1392421-71-4 Molecular Formula: $C_{23}H_{27}N_{7}O_{2}$ Molecular Weight: 433.51

Target: mTOR; PI3K Pathway: PI3K/Akt/mTOR

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

PI3K/mTOR Inhibitor-9 (Compound 1) is a potent mTOR and PI3K inhibitor with IC ₅₀ values of 38 nM, 6.6 μM, 6.6 μM and 0.8 μ M against mTOR (phospho-S6 cellular assay), PI3Kα, PI3Kγ and PI3Kδ, respectively ^[1] .			
mTOR 16 nM (IC ₅₀ , Ser240/244 cellular assay)	mTOR 38 nM (IC ₅₀ , phospho-S6 cellular assay)	PI3Kδ 0.8 μM (IC ₅₀)	PI3Kα 6.6 μM (IC ₅₀)
PI3Kγ 6.6 μM (IC ₅₀)	PI3Kβ >10 μM (IC ₅₀)		
	mTOR 16 nM (IC ₅₀ , Ser240/244 cellular assay) PI3Ky	mTOR mTOR $38 \text{ nM (IC}_{50}, \text{Ser240/244}$ $38 \text{ nM (IC}_{50}, \text{phospho-S6}$ cellular assay) cellular 38 nM PI3K β	mTOR mTOR PI3K δ 16 nM (IC $_{50}$, Ser240/244 38 nM (IC $_{50}$, phospho-S6 0.8 μ M (IC $_{50}$) cellular assay) PI3K γ PI3K β

In Vitro PI3K/mTOR Inhibitor-9 (Compound 1) shows good selectivity over the related kinases PI3K α , β and γ , although with lower

selectivity over PI3K $\delta^{[1]}$.

PI3K/mTOR Inhibitor-9 inhibits CYP2D6 (IC $_{50}$ = 1.98 μ M) and shows time-dependent inhibition (TDI) of CYP3A4 (rate of

enzyme inhibition, $k_{obs} = 0.080 / min)^{[1]}$.

PI3K/mTOR Inhibitor-9 shows good permeability with no sign of P-gp efflux (B-A/A-B: 0.95) [1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Bonazzi S, et al. Discovery of a Brain-Penetrant ATP-Competitive Inhibitor of the Mechanistic Target of Rapamycin (mTOR) for CNS Disorders. J Med Chem. 2020 Feb 13;63(3):1068-1083.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA