Product Data Sheet

AM-1488

Cat. No.: HY-147367 CAS No.: 2079895-60-4

Molecular Formula: $C_{19}H_{17}N_3O_4S$

Molecular Weight: 383.42
Target: Others
Pathway: Others

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description

AM-1488 is a potent, orally active glycine receptor (GlyR) potentiator (hGlyR α 3 EC₅₀=0.45 μ M)^{[1][2]}.

In Vitro

AM-1488 also potentiates native GlyRs in mouse spinal-cord neurons, which express mostly GlyR α 1(β) and GlyR α 3(β)^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability $Assay^{[1]}$

Cell Line:	Mouse spinal-cord neuron
Concentration:	0.5 μΜ
Incubation Time:	10 min
Result:	Increased the peak current evoked by a puff of 20 μ M glycine in five out of five cells, from an average of 50.8 pA to an average of 222.2 pA.

In Vivo

AM-1488 (oral gavage; 20 mg/kg; once) treatment significantly reverse mechanical allodynia induced by nerve injury in a mouse model of neuropathic pain, without being confounded by sedation or motor side effects $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Mouse model of spared nerve injury (SNI) $^{oxed{[1]}}$
Dosage:	20 mg/kg
Administration:	Oral gavage; 20 mg/kg; once
Result:	Produced a significant 94% reversal of tactile allodynia, and the unbound brain concentration was 2.8- and 1.6-fold higher than the mouse GlyR α 1 and GlyR α 3 EC $_{50}$ values, respectively.
Animal Model:	Naive mice $^{[1]}$
Dosage:	20 mg/kg

Administration:	Oral gavage; 20 mg/kg; once
Result:	Showed not significantly different from mice treated with vehicle.

REFERENCES

[1]. Xin Huang, et al. Crystal structures of human glycine receptor $\alpha 3$ bound to a novel class of analgesic potentiators. Nat Struct Mol Biol. 2017 Feb;24(2):108-113.

[2]. Howard Bregman, et al. The Discovery and Hit-to-Lead Optimization of Tricyclic Sulfonamides as Potent and Efficacious Potentiators of Glycine Receptors. J Med Chem. 2017 Feb 9;60(3):1105-1125.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA