

Product Data Sheet

QN523

Cat. No.:HY-148255CAS No.:878581-60-3Molecular Formula: $C_{14}H_{10}N_4O$ Molecular Weight:250.26

Target: Apoptosis; Autophagy
Pathway: Apoptosis; Autophagy
Storage: 4°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: $\geq 16.67 \text{ mg/mL} (66.61 \text{ mM})$

* "≥" means soluble, but saturation unknown.

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	3.9958 mL	19.9792 mL	39.9584 mL
	5 mM	0.7992 mL	3.9958 mL	7.9917 mL
	10 mM	0.3996 mL	1.9979 mL	3.9958 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

QN523 is a novel scaffold with agent-like properties, showing potent in vitro cytotoxicity in a panel of 12 cancer cell lines. QN523 induces apoptosis and autophagy. QN523 can be used in research of cancer $^{[1]}$.

In Vitro

QN523 (72 h) has cytotoxicity with IC $_{50}$ values ranging from 0.1 to 5.7 μ M across 12 cell lines^[1].

QN523 (0.1 and 0.5 μ M; 24 and 48 h; MIA PaCa-2 cells) arrests cell cycle at S phase and delays for pancreatic cancer cells to enter the G2-M phase. QN523 induces apoptosis and autophagy of MIA PaCa-2 Cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cycle Analysis^[1]

Cell Line:	MIA PaCa-2 cells
Concentration:	0.1 and 0.5 μM
Incubation Time:	24 and 48 hours
Result:	Delayed for pancreatic cancer cells to enter the G2-M phase because of accumulation of

		cells in the S phase.		
	Apoptosis Analysis ^[1]	Apoptosis Analysis $^{[1]}$		
	Cell Line:	MIA PaCa-2 cells		
	Concentration:	0.1 and 0.5 μM		
	Incubation Time:	24 and 48 hours		
	Result:	Increased the number of apoptotic cell in time- and dose-dependent manner.		
In Vivo		QN523 (10 and 20 mg/kg; i.p.; daily, for 44 d) inhibits tumor growth in mice of pancreatic cancer xenografts ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	NOD/SCID mice of pancreatic cancer xenografts (6 weeks of age)		
	Dosage:	10 and 20 mg/kg		
	Administration:	Intraperitoneal administration; 1-9 days (10 mg/kg), 10-44 days (20 mg/kg)		
	Result:	Delayed growth of the tumors, and no systemic toxicity.		

REFERENCES

[1]. Kuang Y, et, al. Induction of Genes Implicated in Stress Response and Autophagy by a Novel Quinolin-8-yl-nicotinamide QN523 in Pancreatic Cancer. J Med Chem. 2022 Apr 28;65(8):6133-6156.

[2]. Kuang Y, et, al. Induction of Genes Implicated in Stress Response and Autophagy by a Novel Quinolin-8-yl-nicotinamide QN523 in Pancreatic Cancer. J Med Chem. 2022 Apr 28;65(8):6133-6156.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA