Proteins

Product Data Sheet

VU6019650

Cat. No.: HY-148502 CAS No.: 2926782-31-0 Molecular Formula: $C_{18}H_{22}FN_3O_3S_2$

Molecular Weight: 411.51 Target: mAChR

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 6 months

> -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 8.33 mg/mL (20.24 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.4301 mL	12.1504 mL	24.3007 mL
	5 mM	0.4860 mL	2.4301 mL	4.8601 mL
	10 mM	0.2430 mL	1.2150 mL	2.4301 mL

Please refer to the solubility information to select the appropriate solvent.

\mathbf{DIO}	ו אכו	~ 1	ACTI	MTM
BIU		U.AI	ACTI	VIIY

Description	VU6019650 is a potent and selective orthosteric antagonist of M5 mAChR (IC $_{50}$ =36 nM), can be used for opioid use disorder (OUD) relief. VU6019650 can cross blood brain barrier, potentially modulates the mesolimbic dopaminergic reward circuitry. VU6019650 blocks Oxotremorine M iodide (HY-101372A) induced increases of neuronal firing rates of midbrain dopamine neurons in the ventral tegmental area (VTA) ^{[1][2]} .
IC ₅₀ & Target	mAChR5 36 nM (IC ₅₀)
In Vitro	VU6019650 (0-10 μ M) shows high selectivity for M5 (IC ₅₀ =36 nM) over other subtypes (>100-fold selectivity against human M ₁ . $_4$) ^[1] . VU6019650 (1 μ M) blocks Oxo-M-induced activation of VTA neurons ^[1] . VU6019650 exhibits brain penetrance with rat brain and plasma K _p , K _{p, uu} values of 0.27 and 0.43, respectively ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	VU6019650 (10-56.6 mg/kg; i.p.; single dose) inhibits the rewarding effects of Oxycodone and reduces oxycodone self-

administration in	ı rats ^[1] .					
Pharmacokinetic	Analysis in rats ^[1]					
Route	Dose (mg/kg)	t _(term) (min)	MRT (min)	Cl_obs (mL/min/kg)	Vd _{ss} (L/kg)	AUC (ng·h/mL)
i.v.	1	876	644	56.5	36.6	301
Route	Dose (mg/kg)	C _{max} (ng/mL)	T _{max} (h)	AUG (ng·h/mL)	F (%)	
p.o.	10	433	0.25	830	27.6	
MCE has not inde	ependently confirm	ed the accuracy of	these methods	. They are for referen	ce only.	
Animal Model:	Model: Oxycodone-induced rats ^[1]					
Dosage:	10 m	10 mg/kg, 30 mg/kg, and 56.6 mg/kg in 10% Tween				
Administration:	Intraperitoneal injection; single dose					
Result:	Dose dependently reduced the number of reinforcers earned when Oxycodone is self-administered at a dose of 56.6 $\mu g/kg/infusion$.					

REFERENCES

[1]. Garrison AT, et al. Development of VU6019650: A Potent, Highly Selective, and Systemically Active Orthosteric Antagonist of the M5 Muscarinic Acetylcholine Receptor for the Treatment of Opioid Use Disorder. J Med Chem. 2022 Apr 28;65(8):6273-6286.

[2]. Capstick RA, et al. Discovery of a potent M5 antagonist with improved clearance profile. Part 1: Piperidine amide-based antagonists. Bioorg Med Chem Lett. 2022 Nov 15;76:128988.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA