ccc_R08

Cat. No.: HY-148560 2919019-72-8 CAS No.: Molecular Formula: $C_{22}H_{19}ClO_{6}$ Molecular Weight: 414.84

Target: HBV; DNA/RNA Synthesis

Pathway: Anti-infection; Cell Cycle/DNA Damage

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (241.06 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.4106 mL	12.0528 mL	24.1057 mL
	5 mM	0.4821 mL	2.4106 mL	4.8211 mL
	10 mM	0.2411 mL	1.2053 mL	2.4106 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.03 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (6.03 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: 2.5 mg/mL (6.03 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description	ccc_R08 is a non-cytotoxic and orally active cccDNA inhibitor that reduces cccDNA levels in the liver of HBV-infected mice. ccc_R08 can be used in the study of HBV virus (hepatitis B virus) infection [1][2].
IC ₅₀ & Target	$cccDNA^{[1][2]}.$
In Vitro	ccc_R08 (0.3, 1.0, 3.2, 10, 32 μ M; 5 days) significantly reduces the level of cccDNA, protein-free RC-DNA, and double stranded linear DNA (DL-DNA) in HepDES19 cells ^[1] . ccc_R08 (0-100 μ M) dose-dependently reduces the level of extracellular HBeAg from HepDES19 cells, with IC ₅₀ of ~0.1 μ M ^[1] .

MCE has not independently confirmed the accuracy of these methods. They are for reference only. Western Blot Analysis $^{[1]}$

Cell Line:	HepDES19 cells	
Concentration:	$0.3, 1.0, 3.2, 10, 32 \mu\text{M}$	
Incubation Time:	5 days	
Result:	Reduced the level of cccDNA, protein-free RC-DNA, and double stranded linear DNA (DL-DNA).	

In Vivo

ccc_R08 (20 mg/kg; p.o.; twice per day for 2 weeks) clears cccDNA from the liver of HBVcircle mice $^{[1]}$. ccc_R08 (10, 15, 20, 30 mg/kg; p.o.; twice per day for 2 weeks) significantly decreases the serum level of pgRNA in a dose-dependent manner, and the reduction in pgRNA is quantitatively correlated with that in liver cccDNA at different doses $^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	HBVcircle mouse model $^{[1]}$.	
Dosage:	20 mg/kg	
Administration:	Oral administration; twice per day for 2 weeks	
Result:	Led to the clearance of cccDNA from HBVcircle mouse livers.	
Animal Model:	$HBVcircle$ mouse model $^{[1]}$.	
Dosage:	10, 15, 20, 30 mg/kg	
Administration:	Oral administration; twice per day for 42 days	
Result:	Led to a sustained reduction in the serum levels of pgRNA.	

REFERENCES

 $[1]. Wang L, et al. \ Discovery of a first-in-class \ or ally \ available \ HBV \ cccDNA \ inhibitor. \ J \ Hepatol. \ 2022 \ Dec \ 29:S0168-8278(22)03466-3.$

[2]. Ligat G, et al. Targeting Viral cccDNA for Cure of Chronic Hepatitis B. Curr Hepatol Rep. 2020 Sep;19(3):235-244.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA